论文标题

跨模式知识适应自行车共享需求预测的适应

Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction using Domain-Adversarial Graph Neural Networks

论文作者

Liang, Yuebing, Huang, Guan, Zhao, Zhan

论文摘要

对于自行车共享系统,需求预测对于确保根据预测的需求确保可用自行车的及时平衡至关重要。现有的自行车共享需求预测方法主要基于其自身的历史需求变化,从本质上讲是一个封闭的系统,并忽略了不同运输模式之间的相互作用。这对于自行车共享特别重要,因为它通常用于补充其他模式(例如公共交通)。尽管最近进行了一些进展,但现有的方法仍无法利用多种模式的时空信息,并明确考虑它们之间的分布差异,这很容易导致负转移。为了应对这些挑战,本研究提出了一个以多模式历史数据为输入的自行车共享需求预测的自行车共享需求预测的域 - 交流跨性别图神经网络(DA-MRGNN)。引入了时间对抗性适应网络,以从不同模式的需求模式中提取可共享的特征。为了捕获跨模式之间的空间单元之间的相关性,我们考虑了跨模式相似性和差异的多关系图神经网络(MRGNN)。此外,开发了一种可解释的GNN技术,以了解我们提出的模型如何做出预测。大量实验是使用纽约市的现实世界自行车共享,地铁和乘车数据进行的。结果表明,与现有方法和不同模型组件的有效性相比,我们提出的方法的出色表现。

For bike sharing systems, demand prediction is crucial to ensure the timely re-balancing of available bikes according to predicted demand. Existing methods for bike sharing demand prediction are mostly based on its own historical demand variation, essentially regarding it as a closed system and neglecting the interaction between different transportation modes. This is particularly important for bike sharing because it is often used to complement travel through other modes (e.g., public transit). Despite some recent progress, no existing method is capable of leveraging spatiotemporal information from multiple modes and explicitly considers the distribution discrepancy between them, which can easily lead to negative transfer. To address these challenges, this study proposes a domain-adversarial multi-relational graph neural network (DA-MRGNN) for bike sharing demand prediction with multimodal historical data as input. A temporal adversarial adaptation network is introduced to extract shareable features from demand patterns of different modes. To capture correlations between spatial units across modes, we adapt a multi-relational graph neural network (MRGNN) considering both cross-mode similarity and difference. In addition, an explainable GNN technique is developed to understand how our proposed model makes predictions. Extensive experiments are conducted using real-world bike sharing, subway and ride-hailing data from New York City. The results demonstrate the superior performance of our proposed approach compared to existing methods and the effectiveness of different model components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源