论文标题

拓扑结对和$(n,s)$ - 类型系列

Topological Manin pairs and $(n,s)$-type series

论文作者

Abedin, Raschid, Maximov, Stepan, Stolin, Alexander

论文摘要

为$ l = \ mathfrak {g}(\!(x)\!)\ times \ times \ mathfrak {g} [x]/x^n \ mathfrak {g} [x] $,与对角嵌入$ \ m mathfrak的$ \ mathfrak {与正式的$ r $ r $ r $ r $ r $ r $ r $ r $ lie bialgebra结构进行培养。在这项工作中,我们考虑了$ l $补充$δ$的任意子空间,并将它们与所谓的一系列$ $(N,S)$相关联。 我们证明Lagrangian子空间与偏斜 - 对称$(n,s)$ -Type系列和拓扑Quasi-lie bialgebra结构进行了两者,$ \ mathfrak {g} [\![x] \!] $。使用Manin对的分类,我们将所有准双子结构分类为扭曲和协调转换。 一系列$(n,s)$的类型求解了广义的杨巴克斯特方程,对应于$ l $的子代理。我们讨论了它们在可集成系统理论中的可能实用性。

Lie subalgebras of $ L = \mathfrak{g}(\!(x)\!) \times \mathfrak{g}[x]/x^n\mathfrak{g}[x] $, complementary to the diagonal embedding $Δ$ of $ \mathfrak{g}[\![x]\!] $ and Lagrangian with respect to some particular form, are in bijection with formal classical $r$-matrices and topological Lie bialgebra structures on the Lie algebra of formal power series $ \mathfrak{g}[\![x]\!] $. In this work we consider arbitrary subspaces of $ L $ complementary to $Δ$ and associate them with so-called series of type $ (n,s) $. We prove that Lagrangian subspaces are in bijection with skew-symmetric $ (n,s) $-type series and topological quasi-Lie bialgebra structures on $ \mathfrak{g}[\![x]\!] $. Using the classificaiton of Manin pairs we classify up to twisting and coordinate transformations all quasi-Lie bialgebra structures. Series of type $ (n,s) $, solving the generalized Yang-Baxter equation, correspond to subalgebras of $L$. We discuss their possible utility in the theory of integrable systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源