论文标题
使用量子卫生效应的量子控制:动作原理方法
Qubit control using quantum Zeno effect: Action principle approach
论文作者
论文摘要
我们采用随机路径综合形式和行动原理进行连续量子测量 - chantasri-dressel-Jordan(CDJ)动作形式主义[1,2] - 了解量子ZENO效应有助于控制简单量子系统状态的阶段。可以说,经过重复测量的驱动两级系统的详细动力学揭开了无数阶段。当检测频率小于狂犬病频率时,振荡速度会减慢,最终在有趣的共鸣中停止,当测量恰好按照两个状态之间的过渡时间隔离时。另一方面,在大量重复测量的限制下,动力学以一种相当有趣的方式组织了相当有趣的相位空间中的双曲点点,它们的稳定和不稳定的方向被逆转。因此,相空间流从一个双曲线点到另一个点发生,以不同的方式围绕分离构组织。我们认为,此处介绍的系统处理为在量子误差校正的背景下对量子Zeno效应的更好,更清晰的理解铺平了道路。
We employ the stochastic path-integral formalism and action principle for continuous quantum measurements - the Chantasri-Dressel-Jordan (CDJ) action formalism [1, 2] - to understand the stages in which quantum Zeno effect helps control the states of a simple quantum system. The detailed dynamics of a driven two-level system subjected to repeated measurements unravels a myriad of phases, so to say. When the detection frequency is smaller than the Rabi frequency, the oscillations slow down, eventually coming to a halt at an interesting resonance when measurements are spaced exactly by the time of transition between the two states. On the other hand, in the limit of large number of repeated measurements, the dynamics organizes itself in a rather interesting way about two hyperbolic points in phase space whose stable and unstable directions are reversed. Thus, the phase space flow occurs from one hyperbolic point to another, in different ways organized around the separatrices. We believe that the systematic treatment presented here paves the way for a better and clearer understanding of quantum Zeno effect in the context of quantum error correction.