论文标题

在结构化室内环境中机器人导航的高级情况图

Advanced Situational Graphs for Robot Navigation in Structured Indoor Environments

论文作者

Bavle, Hriday, Sanchez-Lopez, Jose Luis, Shaheer, Muhammad, Civera, Javier, Voos, Holger

论文摘要

移动机器人从其环境中提取信息,以了解他们当前的情况,以实现智能决策和自主任务执行。在我们以前的工作中,我们介绍了情况图(s-graphs)的概念,该概念结合了单个优化图,机器人密钥帧以及具有几何,语义和拓扑抽象的环境的表示。尽管S-Graph是实时构建和优化的,并证明了最先进的结果,但它们仅限于特定的结构化环境,并具有特定的房间和走廊的手工调整尺寸。 在这项工作中,我们提供了情境图的高级版本(S-Graphs+),由五个分层优化图组成,包括(1)度量层以及自由空间簇的图(2)密钥框架(2)键框层,机器人位置已注册了(3)层(3)层的图层(3)层面的平面层(4)层层(4)层面的新颖房间(4),该层(4)构造了(4)层面,这些层(4)层面(4)层面层(4)层面。在给定的楼层级内的房间。 S-Graphs+在S-Graphs上表现出改善的性能,可以有效提取房间信息,同时改善机器人的姿势估计,从而以五个分层环境模型的形式扩展机器人的情境意识。

Mobile robots extract information from its environment to understand their current situation to enable intelligent decision making and autonomous task execution. In our previous work, we introduced the concept of Situation Graphs (S-Graphs) which combines in a single optimizable graph, the robot keyframes and the representation of the environment with geometric, semantic and topological abstractions. Although S-Graphs were built and optimized in real-time and demonstrated state-of-the-art results, they are limited to specific structured environments with specific hand-tuned dimensions of rooms and corridors. In this work, we present an advanced version of the Situational Graphs (S-Graphs+), consisting of the five layered optimizable graph that includes (1) metric layer along with the graph of free-space clusters (2) keyframe layer where the robot poses are registered (3) metric-semantic layer consisting of the extracted planar walls (4) novel rooms layer constraining the extracted planar walls (5) novel floors layer encompassing the rooms within a given floor level. S-Graphs+ demonstrates improved performance over S-Graphs efficiently extracting the room information while simultaneously improving the pose estimate of the robot, thus extending the robots situational awareness in the form of a five layered environmental model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源