论文标题

通过深度学习,通过梯度提升增强了梯度提升的室内定位

Indoor Positioning via Gradient Boosting Enhanced with Feature Augmentation using Deep Learning

论文作者

Goharfar, Ashkan, Babaki, Jaber, Rasti, Mehdi, Nardelli, Pedro H. J.

论文摘要

随着物联网(IoT)的出现,室内环境中的本地化已经变得不可避免,并且近年来引起了很多关注。在信号干扰存在下,已经做出了几项努力来应对准确定位系统的挑战。在本文中,我们通过使用人工神经网络(Augboost-Ann)进行逐步增强,提出一种新颖的深度学习方法,以增强渐变功能增强,以便在室内定位应用程序上进行训练,以训练标记的数据。为此,我们提出了使用星网拓扑结构的IoT架构,以通过Raspberry Pi作为室内环境中的接入点(AP)来收集蓝牙低能(BLE)模块的接收信号强度指标(RSSI)。实验的数据集在不同时期内聚集在现实世界中,以匹配真实的环境。接下来,我们应对Augboost-Ann培训的挑战,该培训在每次迭代中都使用深度神经网络和转移学习技术进行决策树。实验结果表明,与最近在文献中提出的现有梯度提升和深度学习方法相比,准确性的提高了8%以上,我们提出的模型的平均位置准确性为0.77 m。

With the emerge of the Internet of Things (IoT), localization within indoor environments has become inevitable and has attracted a great deal of attention in recent years. Several efforts have been made to cope with the challenges of accurate positioning systems in the presence of signal interference. In this paper, we propose a novel deep learning approach through Gradient Boosting Enhanced with Step-Wise Feature Augmentation using Artificial Neural Network (AugBoost-ANN) for indoor localization applications as it trains over labeled data. For this purpose, we propose an IoT architecture using a star network topology to collect the Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) modules by means of a Raspberry Pi as an Access Point (AP) in an indoor environment. The dataset for the experiments is gathered in the real world in different periods to match the real environments. Next, we address the challenges of the AugBoost-ANN training which augments features in each iteration of making a decision tree using a deep neural network and the transfer learning technique. Experimental results show more than 8\% improvement in terms of accuracy in comparison with the existing gradient boosting and deep learning methods recently proposed in the literature, and our proposed model acquires a mean location accuracy of 0.77 m.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源