论文标题

有效的轻质LSB隐身术,深度学习stemanlysis

An Efficient Light-weight LSB steganography with Deep learning Steganalysis

论文作者

Das, Dipnarayan, Durafe, Asha, Patidar, Vinod

论文摘要

积极的研究将通过使用数字图像中的数据隐藏技术来安全地传输秘密消息或所谓的隐身志。在评估了最先进的研究工作之后,我们发现,大多数现有的解决方案都不是有希望的,并且对基于机器学习的坚定分析无效。在本文中,通过图形密钥嵌入和通过加密混淆数据来介绍轻巧的隐身方案。通过保持工业适用性的心态,以展示拟议计划的有效性,我们强调了基于深度学习的坚定分析。所提出的包含两个方案的算法不仅可以承受统计模式识别器,还可以使用众所周知的预训练的深度学习网络X感染者来通过特征提取来实现机器学习的坚固分析。我们为不同方案和实现详细信息提供了算法的详细协议。此外,还通过统计和机器学习绩效分析来评估不同的性能指标。关于艺术的状态,结果令人印象深刻。我们通过统计结构分析获得了2.55%的准确性,并且机器学习坚定分析最多49.93〜50%正确地分类的实例。

Active research is going on to securely transmit a secret message or so-called steganography by using data-hiding techniques in digital images. After assessing the state-of-the-art research work, we found, most of the existing solutions are not promising and are ineffective against machine learning-based steganalysis. In this paper, a lightweight steganography scheme is presented through graphical key embedding and obfuscation of data through encryption. By keeping a mindset of industrial applicability, to show the effectiveness of the proposed scheme, we emphasized mainly deep learning-based steganalysis. The proposed steganography algorithm containing two schemes withstands not only statistical pattern recognizers but also machine learning steganalysis through feature extraction using a well-known pre-trained deep learning network Xception. We provided a detailed protocol of the algorithm for different scenarios and implementation details. Furthermore, different performance metrics are also evaluated with statistical and machine learning performance analysis. The results were quite impressive with respect to the state of the arts. We received 2.55% accuracy through statistical steganalysis and machine learning steganalysis gave maximum of 49.93~50% correctly classified instances in good condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源