论文标题

通过自我监督的层次结构群集进行几次射击文本分类的拆卸任务关系

Disentangling Task Relations for Few-shot Text Classification via Self-Supervised Hierarchical Task Clustering

论文作者

Zha, Juan, Li, Zheng, Wei, Ying, Zhang, Yu

论文摘要

很少有射击的文本分类(FSTC)通过利用历史任务中的先验知识来模仿人类有效地学习新的文本分类器,从而有效地学习新的文本分类器。但是,大多数先前的工作都假定所有任务都是从单个数据源中取样的,该数据源无法适应任务是异质的现实情况,并位于不同的分布中。因此,现有方法可能会遭受其全球知识共享的机制来处理任务异质性。另一方面,固有的任务关系没有被明确捕获,使任务知识无组织,并且很难转移到新任务中。因此,我们探索了一种新的FSTC设置,其中任务可以来自各种数据源。为了解决任务异质性,我们提出了一种自我监督的层次任务聚类(SS-HTC)方法。 SS-HTC不仅通过在层次级别中动态组织异质任务来自定义特定于集群的知识,而且可以分解任务之间关系的基本关系以提高可解释性。对五个公共FSTC基准数据集进行了广泛的实验,证明了SS-HTC的有效性。

Few-Shot Text Classification (FSTC) imitates humans to learn a new text classifier efficiently with only few examples, by leveraging prior knowledge from historical tasks. However, most prior works assume that all the tasks are sampled from a single data source, which cannot adapt to real-world scenarios where tasks are heterogeneous and lie in different distributions. As such, existing methods may suffer from their globally knowledge-shared mechanisms to handle the task heterogeneity. On the other hand, inherent task relation are not explicitly captured, making task knowledge unorganized and hard to transfer to new tasks. Thus, we explore a new FSTC setting where tasks can come from a diverse range of data sources. To address the task heterogeneity, we propose a self-supervised hierarchical task clustering (SS-HTC) method. SS-HTC not only customizes cluster-specific knowledge by dynamically organizing heterogeneous tasks into different clusters in hierarchical levels but also disentangles underlying relations between tasks to improve the interpretability. Extensive experiments on five public FSTC benchmark datasets demonstrate the effectiveness of SS-HTC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源