论文标题

异性高斯序列模型中的稀疏信号检测:尖锐的最小速率

Sparse Signal Detection in Heteroscedastic Gaussian Sequence Models: Sharp Minimax Rates

论文作者

Chhor, Julien, Mukherjee, Rajarshi, Sen, Subhabrata

论文摘要

给定具有未知平均值$θ\ in \ mathbb r^d $和已知的协方差矩阵$σ= \ operatorAtorName {diag}(σ_1^2,\ dots,σ_d^2)$的异质性高斯序列模型,我们研究了针对Sparse Sparsity $ S $ S $。也就是说,我们表征了应有多大的$ε^*> 0 $的特征,以便以较高的概率区分null假设$θ= 0 $与$ s $ s $ -s-sparse vectors组成的$ \ mathbb r^d $组成的替代品,与$ 0 $ 0 $ in $ n $ n in $ n $ n $ n $ n $ n n $ n n $ n n $ n $ n n $ nord($ t $ t in [1 $ t \ in [1,\ infty $] $)。我们发现minimax上和下限在minimax分离半径$ε^*$上,并证明它们始终是匹配的。我们还得出相应的最小值测试,以达到这些界限。我们的结果揭示了有关$ε^*$在稀疏度,$ l^t $ metric和$σ$的异质性概况方面的$ε^*$行为的新相关。对于欧几里得人(即$ l^2 $)的分离,我们弥合了文献中其余的空白。

Given a heterogeneous Gaussian sequence model with unknown mean $θ\in \mathbb R^d$ and known covariance matrix $Σ= \operatorname{diag}(σ_1^2,\dots, σ_d^2)$, we study the signal detection problem against sparse alternatives, for known sparsity $s$. Namely, we characterize how large $ε^*>0$ should be, in order to distinguish with high probability the null hypothesis $θ=0$ from the alternative composed of $s$-sparse vectors in $\mathbb R^d$, separated from $0$ in $L^t$ norm ($t \in [1,\infty]$) by at least $ε^*$. We find minimax upper and lower bounds over the minimax separation radius $ε^*$ and prove that they are always matching. We also derive the corresponding minimax tests achieving these bounds. Our results reveal new phase transitions regarding the behavior of $ε^*$ with respect to the level of sparsity, to the $L^t$ metric, and to the heteroscedasticity profile of $Σ$. In the case of the Euclidean (i.e. $L^2$) separation, we bridge the remaining gaps in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源