论文标题
黑洞和Nilmanifolds:准模式作为额外尺寸的指纹?
Black holes and nilmanifolds: quasinormal modes as the fingerprints of extra dimensions?
论文作者
论文摘要
我们研究了准模式(QNM)是否可以用于搜索额外尺寸的签名。为了解决超出标准模型(BSM)文献中的差距,我们在这里集中在以负RICCI曲率为特征的更高维度上。作为第一步,我们考虑了由四维Schwarzschild黑洞时空和三维Nilmanifold(扭曲的圆环)组成的产品空间;我们将黑洞扰动建模为标量测试场。我们建议,可以在QNM的有效电位中进行样式化的额外维数,作为代表Kaluza-Klein(KK)频谱的平方质量术语。然后,我们使用三种不同的数值方法来计算相应的QNM频谱,并确定可能使用QNM无法检测到KK质量的``可检测性结合''。
We investigate whether quasinormal modes (QNMs) can be used in the search for signatures of extra dimensions. To address a gap in the Beyond the Standard Model (BSM) literature, we focus here on higher dimensions characterised by negative Ricci curvature. As a first step, we consider a product space comprised of a four-dimensional Schwarzschild black hole space-time and a three-dimensional nilmanifold (twisted torus); we model the black hole perturbations as a scalar test field. We suggest that the extra-dimensional geometry can be stylised in the QNM effective potential as a squared mass-like term representing the Kaluza-Klein (KK) spectrum. We then compute the corresponding QNM spectrum using three different numerical methods, and determine a possible ``detectability bound" beyond which KK masses cannot be detected using QNMs.