论文标题

弹性异质介质中的基于隐式FFT的波传播方法

An implicit FFT-based method for wave propagation in elastic heterogeneous media

论文作者

Sancho, R., de Pedraza, V. Rey, Lafourcade, P., Lebensohn, R. A., Segurado, J.

论文摘要

开发了一种基于FFT的算法,以模拟异质$ D $维矩形形状域中弹性波的传播。该方法允许人们在域的一个子区域中规定位移作为时间的函数,从而模仿Dirichlet边界条件在外部面上的应用。使用无条件稳定的beta-newmark方法进行时间离散化。通过将平衡方程转换为傅立叶空间并使用预处理的Krylov求解器求解相应的线性系统,可以解决每个时间步骤中的位移的隐式问题。根据分析解决方案对所得的方法进行了验证,并与隐式和显式有限元模拟以及明确的FFT方法进行了比较。该方法的准确性与有限元素相似或更好,并且数值性能显然是优越的,从而可以使用更大的模型。为了说明该方法的功能,提出了一些数值示例,包括平面,圆形和球形波的传播以及在多晶介质中脉冲传播的模拟。

An FFT-based algorithm is developed to simulate the propagation of elastic waves in heterogeneous $d$-dimensional rectangular shape domains. The method allows one to prescribe the displacement as a function of time in a subregion of the domain, emulating the application of Dirichlet boundary conditions on an outer face. Time discretization is performed using an unconditionally stable beta-Newmark approach. The implicit problem for obtaining the displacement at each time step is solved by transforming the equilibrium equations into Fourier space and solving the corresponding linear system with a preconditioned Krylov solver. The resulting method is validated against analytical solutions and compared with implicit and explicit finite element simulations and with an explicit FFT approach. The accuracy of the method is similar to or better than that of finite elements, and the numerical performance is clearly superior, allowing the use of much larger models. To illustrate the capabilities of the method, some numerical examples are presented, including the propagation of planar, circular, and spherical waves and the simulation of the propagation of a pulse in a polycrystalline medium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源