论文标题
在被困离子中的高阶耦合项的稳健量子控制
Robust quantum control for higher order coupling term in trapped ions
论文作者
论文摘要
被困的离子硬件最近取得了重大进展,现在是量子计算的领先平台之一。为了在捕获的离子中构造两倍的门,对离子链的实验操纵方法越来越普遍。鉴于受限的控制技术,实施高保真量子门操作如何至关重要。当前脉冲设计优化的许多作品都集中在离子 - 波和有效离子耦合上,同时忽略了通过实验缺陷带来的这两个术语的高阶扩展影响。本文提出了一种新型的稳健量子控制优化方法,中的离子。通过将由于错误引起的高阶项引入优化成本函数,我们生成了一个非常强大的Molmer-Sorensen门,在漂移噪声范围$ \ pm 10 $ kHz和时间噪声范围和时间噪声范围$ \ pm 0.02 $的情况下,低于$ 10^{ - 3} $的不忠行为。我们的工作揭示了高阶耦合项在被困的离子脉冲控制优化(尤其是较高离子离子耦合顺序)中的至关重要作用,并提供了一种强大的优化方案,以实现在捕获的离子平台中实现更有效的纠缠状态。
Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing. To construct two-qubit gates in trapped ions, experimental manipulation approaches for ion chains are becoming increasingly prevalent. Given the restricted control technology, how implementing high-fidelity quantum gate operations is crucial. Many works in current pulse design optimization focus on ion-phonon and effective ion-ion coupling while ignoring the higher-order expansion impacts of these two terms brought on by experiment defects. This paper proposed a novel robust quantum control optimization method in trapped ions. By introducing the higher-order terms caused by the error into the optimization cost function, we generated an extremely robust Molmer-Sorensen gate with infidelity below $10^{-3}$ under drift noise range $\pm 10$ kHz and time noise range $\pm 0.02$. Our work reveals the vital role of higher-order coupling terms in trapped ion pulse control optimization, especially the higher ion-ion coupling order, and provides a robust optimization scheme for realizing more efficient entangled states in trapped ion platforms.