论文标题

在GL(2N)特征因素:分支法律,Shalika家庭和$ P $ -ADIC $ L $ functions

On the GL(2n) eigenvariety: branching laws, Shalika families and $p$-adic $L$-functions

论文作者

Salazar, Daniel Barrera, Dimitrov, Mladen, Graham, Andrew, Jorza, Andrei, Williams, Chris

论文摘要

在本文中,我们证明了一个$ \ mathrm {gl}(2n)$ - 特征因(纯)重量空间在非临界Shalika点的(纯)重量空间上,并构建多变量的$ P $ -ADIC $ L $ l $ functions在由此产生的Shalika组件上有所不同。我们的结构在tame 1级和Iwahori级别上以$ p $的形式持有$ l $ - 价值的$ p $ - ad-adic变化(定期代数的cuspidal cuspidal partomorphic Automorthic Automorthic Arthymorphic表示,$ \ mathrm {gl}(2N)$允许Shalika型号在整个纯净的体重空间中)。对于$ \ mathrm {gl}(4)$,Loeffler和Zerbes使用这些结果证明了Bloch-kato-kato猜想的案例,以$ \ mathrm {gsp}(4)$。 我们的主要创新是:(a)$ \ mathrm {gl}(2n)$的本地表示的“ Shalika改进”的介绍和系统研究,以及对其所附局部扭曲的Zeta积分的评估; (b)代表理论分支定律的$ p $ adiC插值,用于$ \ mathrm {gl}(n)(n)\ times \ times \ mathrm {gl}(n)$内部$ \ mathrm {gl}(gl}(2n)$。使用(b),我们为$ \ mathrm {gl}(2n)$在过度会议的同胞组上提供多变量$ p $ - adic功能的构造,以(a)的Zeta积分插值。我们利用这些功能的不断变化来证明我们的主要算术应用。

In this paper, we prove that a $\mathrm{GL}(2n)$-eigenvariety is étale over the (pure) weight space at non-critical Shalika points, and construct multi-variable $p$-adic $L$-functions varying over the resulting Shalika components. Our constructions hold in tame level 1 and Iwahori level at $p$, and give $p$-adic variation of $L$-values (of regular algebraic cuspidal automorphic representations of $\mathrm{GL}(2n)$ admitting Shalika models) over the whole pure weight space. In the case of $\mathrm{GL}(4)$, these results have been used by Loeffler and Zerbes to prove cases of the Bloch--Kato conjecture for $\mathrm{GSp}(4)$. Our main innovations are: (a) the introduction and systematic study of `Shalika refinements' of local representations of $\mathrm{GL}(2n)$, and evaluation of their attached local twisted zeta integrals; and (b) the $p$-adic interpolation of representation-theoretic branching laws for $\mathrm{GL}(n) \times \mathrm{GL}(n)$ inside $\mathrm{GL}(2n)$. Using (b), we give a construction of multi-variable $p$-adic functionals on the overconvergent cohomology groups for $\mathrm{GL}(2n)$, interpolating the zeta integrals of (a). We exploit the resulting non-vanishing of these functionals to prove our main arithmetic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源