论文标题
增强的旋转和圆形喷射,撞击加热的平板及其传热特性
An augmented swirling and round jet impinging on a heated flat plate and its heat transfer characteristics
论文作者
论文摘要
正在提出一种生成增强旋转和圆形喷气机的几何机制。所提出的几何形状具有轴向入口端口和三个切向入口端口,每个端口的直径为10mm。为增强喷气机引入了一个称为拆分比的参数,该参数定义为通过这些入口端口分开的气流百分比。以四种不同的分裂比(SR 1,2,3和4)的流量导致单个增强的旋转射流和直径d = 30mm的圆形喷射,为此,使用3D rans rans rans数值模拟预测了撞击热传递。此外,对雷诺数(re = 6000至15,000)和喷气板距离(h = 1.5d to 1.5d to 1.5d to 4D)进行了内部几何叶片旋转器为45、60和30度的叶片角度生成的常规圆形喷气机和旋转喷气机的计算。使用计算对所有喷气机的流量结构进行了比较研究,然后对粒子图像速度测定(PIV)流动可视化结果进行了有限的讨论。对所有喷气机进行了撞击传热分析。可以推断,在较小的喷射板距离H = 1.5D下,增强的喷气机和叶片旋转器喷气机显示了从撞击表面(加热平板)的热传递。相比之下,常规的圆形喷气机在H = 4D时显示出最大的热传递。从比较研究中,使用拟议的增强喷射的撞击传热特性在优化的喷射板距离H = 1.5D和分裂比(SR 4)时更好,比常规圆形喷气式飞机的平均努塞尔特数量(NU AVG)增强,比vane-swirl-swirl-swirl-swirl-swirl-jirter jet part增强。同样,预计SR-4的拟议增强喷气机的停滞努塞尔特数(NU STG)的增长率为189%。
A geometrical mechanism that generates augmented swirling and round jets is being proposed. The proposed geometry has an axial inlet port and three tangential inlet ports, each of diameter 10mm. A parameter called Split ratio, defined as the percentage of airflow split through these inlet ports, is introduced for the augmented jet. Flow at four different split ratios(SR 1,2,3, and 4) results in a single augmented jet of swirling and round jets of diameter D = 30mm, for which impingement heat transfer is predicted using 3D RANS numerical simulations. Also, computations for conventional round jets and swirling jets generated by an in-house geometrical vane swirler of 45, 60 and 30 degree vane angles each of jet diameter D = 30 mm are performed for the Reynolds number (Re = 6000 to 15,000) and at a jet-plate distance (H = 1.5D to 4D). A comparative study of the flow structures for all the jets using computations is done, followed by a limited discussion on Particle Image velocimetry (PIV) flow visualization results. An impingement heat transfer analysis for all the jets is studied numerically. It is inferred that at a smaller jet-plate distance H =1.5D, the augmented jet and vane swirler jets showed an improved heat transfer from the impingement surface (heated flat plate). In contrast, the conventional round jets showed maximum heat transfer at H = 4D. From the comparative study, the impingement heat transfer characteristics using the proposed augmented jet are better at an optimized jet-plate distance H=1.5D and at a split ratio (SR 4), with an enhancement in the average Nusselt number (Nu avg) of 88% than the conventional round jet and 101% than the vane-swirler jet counterpart. Similarly, an enhancement in the stagnation Nusselt number (Nu stg) of 189% than the round jet is predicted for the proposed augmented jet at SR-4.