论文标题
部分可观测时空混沌系统的无模型预测
Thurston compactifications of spaces of stability conditions on curves
论文作者
论文摘要
在本文中,我们在平滑的投射曲线上构建了布里奇兰稳定条件空间的紧凑型,作为Teichmüller理论中瑟斯顿压实的类似物。 在椭圆曲线的情况下,我们通过同源镜子对称性将结果与经典的圆环进行比较,并使用紧凑型对自动等量的Nielsen-Thurston分类进行比较。 此外,我们观察到在投影线的情况下,我们发现了一个有趣的现象。
In this paper, we construct a compactification of the space of Bridgeland stability conditions on a smooth projective curve, as an analogue of Thurston compactifications in Teichmüller theory. In the case of elliptic curves, we compare our results with the classical one of the torus via homological mirror symmetry and give the Nielsen-Thurston classification of autoequivalences using the compactification. Furthermore, we observe an interesting phenomenon in the case of the projective line.