论文标题

来自QCD状态方程的深度学习准粒子质量

Deep-learning quasi-particle masses from QCD equation of state

论文作者

Li, Fu-Peng, Lü, Hong-Liang, Pang, Long-Gang, Qin, Guang-You

论文摘要

夸克和胶子的相互作用在非扰动区域很强。只能使用第一原则晶格QCD计算来研究强相互作用的量子染色体动力学(QCD)培养基的状态方程(EOS)。但是,可以使用简单的统计公式将复杂的QCD EOS通过将培养基视为游离的Parton气体,其基本自由程度是夸克和称为准颗粒的质量,具有温度依赖性的质量。我们使用深层的神经网络和自动差异化来解决这个变化问题,在这种问题中,准胶结,上/下和奇怪的夸克的质量是三个未知功能,其形式由深神经网络表示。我们使用这些机器学习的准粒子块来重现QCD EOS,并根据热QCD物质温度的函数计算熵密度($η/s $)上的剪切粘度。

The interactions of quarks and gluons are strong at non-perturbative region. The equation of state (EoS) of a strongly-interacting quantum chromodynamics (QCD) medium can only be studied using the first-principle lattice QCD calculations. However, the complicated QCD EoS can be reproduced using simple statistical formula by treating the medium as a free parton gas whose fundamental degree of freedoms are dressed quarks and gluons called quasi-particles, with temperature-dependent masses. We use deep neural network and auto differentiation to solve this variational problem in which the masses of quasi gluons, up/down and strange quarks are three unknown functions, whose forms are represented by deep neural network. We reproduce the QCD EoS using these machine learned quasi-particle masses, and calculate the shear viscosity over entropy density ($η/s$) as a function of temperature of the hot QCD matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源