论文标题

虚假:假否定样本意识到对比度学习,用于高分辨率遥感图像的语义分割

False: False Negative Samples Aware Contrastive Learning for Semantic Segmentation of High-Resolution Remote Sensing Image

论文作者

Zhang, Zhaoyang, Wang, Xuying, Mei, Xiaoming, Tao, Chao, Li, Haifeng

论文摘要

现有的RSI的SSCL是基于构建正和负样品对而构建的。但是,由于RSI地面对象的丰富性以及RSI上下文语义的复杂性,相同的RSI贴片具有正和负样品的共存和不平衡,这会导致SSCL将负样本推出,同时将正面样品推开,同时将正样品推向遥远,并且反之亦然。我们将其称为样本混杂问题(SCI)。为了解决这个问题,我们为高分辨率RSIS的语义分割提出了一个假阴性样本意识到对比度学习模型(False)。由于不监督SSCL预处理,因此缺乏假阴性样本(FNS)的可确定标准导致理论上的不确定性,我们设计了两个步骤来实施FNS近似确定:FNS的粗糙确定和FNS的精确校准。我们通过FNS自决(FNSD)策略实现了FNS的粗糙确定,并通过FNS置信度校准(FNCC)损耗函数实现FNS的校准。与当前三种不同类型的SSCL模型相比,三个RSI语义分割数据集的实验结果表明,错误有效地提高了下游RSI语义分割任务的准确性。 ISPRS POTSDAM数据集上的平均跨工会平均提高了0.7 \%。在CVPR DGLC上,数据集平均提高了12.28%;在Xiangtan数据集上,这将平均提高1.17 \%。这表明SSCL模型具有自定义的FNS的能力,并且虚假有效地减轻了自我监督的对比学习中的SCI。源代码可在https://github.com/geox-lab/false上获得。

The existing SSCL of RSI is built based on constructing positive and negative sample pairs. However, due to the richness of RSI ground objects and the complexity of the RSI contextual semantics, the same RSI patches have the coexistence and imbalance of positive and negative samples, which causing the SSCL pushing negative samples far away while pushing positive samples far away, and vice versa. We call this the sample confounding issue (SCI). To solve this problem, we propose a False negAtive sampLes aware contraStive lEarning model (FALSE) for the semantic segmentation of high-resolution RSIs. Since the SSCL pretraining is unsupervised, the lack of definable criteria for false negative sample (FNS) leads to theoretical undecidability, we designed two steps to implement the FNS approximation determination: coarse determination of FNS and precise calibration of FNS. We achieve coarse determination of FNS by the FNS self-determination (FNSD) strategy and achieve calibration of FNS by the FNS confidence calibration (FNCC) loss function. Experimental results on three RSI semantic segmentation datasets demonstrated that the FALSE effectively improves the accuracy of the downstream RSI semantic segmentation task compared with the current three models, which represent three different types of SSCL models. The mean Intersection-over-Union on ISPRS Potsdam dataset is improved by 0.7\% on average; on CVPR DGLC dataset is improved by 12.28\% on average; and on Xiangtan dataset this is improved by 1.17\% on average. This indicates that the SSCL model has the ability to self-differentiate FNS and that the FALSE effectively mitigates the SCI in self-supervised contrastive learning. The source code is available at https://github.com/GeoX-Lab/FALSE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源