论文标题

关于随机包装问题的稀疏

On Sparsification of Stochastic Packing Problems

论文作者

Dughmi, Shaddin, Kalayci, Yusuf Hakan, Patel, Neel

论文摘要

由于最新的查询随机匹配的进展,我们更加普遍地研究了对随机堆积问题(SPP)的稀疏性的系统研究。具体而言,我们考虑使用概率p独立活跃的元素,并询问是否可以(非适应性)计算一组稀疏的元素,保证对已实现的(活动)子问题包含大约最佳的解决方案。我们寻求对此类问题的广泛适用性的结构和算法结果。我们的重点是计算稀疏集,该集合包含D填料问题的可行解决方案,其中D最多是线性的或最多是poly的。在1/p。至关重要的是,我们要求D独立于与包装问题的``大小''相关的任何参数。我们将d称为稀疏器的程度,在匹配的特殊情况下与图理论程度一致。首先,我们根据争论解决方案展示了1/p的通用稀疏器。对于任何添加目标的任何包装问题,该稀疏器的近似值匹配最佳的竞争分辨率方案(CRS),并且大约匹配了子模型目标的最佳单调CRS。其次,我们踏上了用于矩形,它们的交叉点和加权匹配的通用稀疏器的表现。这些改进的稀疏器具有不同的算法和分析方法,并在1/p中具有线性。在单个矩阵的情况下,我们的稀疏器趋向于最佳溶液。对于加权匹配,我们将基于争论的稀疏器与先前工作的技术方法相结合,以将最高比率从0.501提高到0.536。第三,我们检查了具有少量目标的包装问题。我们表明,即使是最简单的问题也不承认稀疏器接近最佳性。

Motivated by recent progress on stochastic matching with few queries, we embark on a systematic study of the sparsification of stochastic packing problems (SPP) more generally. Specifically, we consider SPPs where elements are independently active with a probability p, and ask whether one can (non-adaptively) compute a sparse set of elements guaranteed to contain an approximately optimal solution to the realized (active) subproblem. We seek structural and algorithmic results of broad applicability to such problems. Our focus is on computing sparse sets containing on the order of d feasible solutions to the packing problem, where d is linear or at most poly. in 1/p. Crucially, we require d to be independent of the any parameter related to the ``size'' of the packing problem. We refer to d as the degree of the sparsifier, as is consistent with graph theoretic degree in the special case of matching. First, we exhibit a generic sparsifier of degree 1/p based on contention resolution. This sparsifier's approximation ratio matches the best contention resolution scheme (CRS) for any packing problem for additive objectives, and approximately matches the best monotone CRS for submodular objectives. Second, we embark on outperforming this generic sparsifier for matroids, their intersections and weighted matching. These improved sparsifiers feature different algorithmic and analytic approaches, and have degree linear in 1/p. In the case of a single matroid, our sparsifier tends to the optimal solution. For weighted matching, we combine our contention-resolution-based sparsifier with technical approaches of prior work to improve the state of the art ratio from 0.501 to 0.536. Third, we examine packing problems with submodular objectives. We show that even the simplest such problems do not admit sparsifiers approaching optimality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源