论文标题
将Majorana fermion的Anapole力矩与外部电流通过光子发射介导的外部电流。
Aligning a Majorana fermion's anapole moment with an external current through photon emission mediated by the fermion's generalized polarizabilities
论文作者
论文摘要
旋转 - $ \ frac {1} {2} $ majorana fermion的唯一静态电磁特性是其Anapole时刻。尽管它们不能将它们与单个真实光子搭配在一起,但这些颗粒可以通过虚拟光子与电流相互作用。如果将Majorana fermion浸入背景电流中,则费米的自旋状态之间存在能量差。较高的能量状态具有与电流的抗吻合力矩对符号。在本文中,我们介绍了最初不偏振的Majorana费米斯系统相对于静态背景电流实现一定程度的极化的能力。在考虑允许Majorana fermion旋转到较低能量状态的过程中,我们专注于两个不可逆的过程:两个真实光子的自发发射以及在Virtual Compton散射中发出的单个真实光子的发射。这两个过程都涉及通过费米昂的极化耦合到光子。我们使用哈密顿量的低能扩展来计算这些过程的自旋转变速率,并构建玩具模型,以展示这些速率如何取决于模型中的基本参数。将这些想法应用于热暗物质(DM)模型时,我们发现,当DM与早期宇宙中标准模型等离子体的热模型脱离时,如果存在足够的水流,则两光片发射可以忽略不计,但DM介质的部分极化可以通过虚拟Compton散射进行。
The sole static electromagnetic property of a spin-$\frac{1}{2}$ Majorana fermion is its anapole moment. Though they cannot couple to single real photons, these particles can interact with electric currents through virtual photons. If a Majorana fermion is immersed in a background current, there is an energy difference between the spin states of the fermion; the higher energy state has its anapole moment antialigned with the current. In this paper, we address the ability of a system of initially unpolarized Majorana fermions to achieve some degree of polarization relative to a static background current. In considering processes that allow the Majorana fermion's spin to flip to the lower-energy state, we focus upon two irreversible processes: the spontaneous emission of two real photons and the emission of a single real photon emitted in virtual Compton scattering. Both of these processes involve coupling to photons via the fermion's polarizaibilities. We compute the spin-flip transition rates for these processes using a low-energy expansion of the Hamiltonian and construct a toy model to showcase how these rates depend upon the underlying parameters within a model. Applying these ideas to a thermal dark matter (DM) model, we find that when the DM thermally decouples from the Standard Model plasma in the early universe, two-photon emission is negligible but partial polarization for the DM medium can proceed via virtual Compton scattering if sufficient currents exist.