论文标题
$ l $ - 带棕色矮人的带光谱
$L$-band Spectra of Young Brown Dwarfs
论文作者
论文摘要
我们提出了$ L $ -band(2.98--3.96 $ $ m)的光谱研究,对8个年轻L矮人的光谱类型从L2到L7不等。我们的光谱($λ/{δλ} \约$ 250至600)是使用双子座近红外光谱仪收集的。我们首先检查了年轻的$ l $ band频谱序列,最著名的是分析$ Q $ - 甲烷吸收特征的演变为3.3 $ $ $ m。我们发现$ Q $分支的功能首先出现在L3和L6之间,如较旧的矮人矮人所示。其次,我们分析了各种大气模型如何通过将五个不同的模型光谱网格拟合到数据中,从而将$ l $ band的复制物复制到$ l $ band(0.7--2.5 $ $ m)的近IR(0.7--2.5 $ $ m)。将近红外数据的最佳拟合参数与$ l $ band数据的合并参数进行了比较,仅近红外数据的最佳拟合参数,从而隔离了添加$ l $ band对结果的影响。此添加显着导致$ \ sim $ 100 k的最佳有效温度下降。另外,当模型中包括云和垂直混合速率($ k _ {\ mathrm {zz}} $)时,首选的云和较高的$ k _ {\ mathrm {zz}} $值是首选。我们的五个物体先前还发表了使用进化模型,年龄估计和降压仪的有效温度和表面重力。比较将这些参数与我们的光谱匹配的模型光谱,我们发现需要不平衡化学和云来匹配这些发表的有效温度。其中三个物体是AB DOR的成员,使我们能够显示$ Q $ - 甲烷的温度依赖性。
We present a $L$-band (2.98--3.96$μ$m) spectroscopic study of 8 young L dwarfs with spectral types ranging from L2 to L7. Our spectra ($λ/{Δλ}\approx$ 250 to 600) were collected using the Gemini Near-InfraRed Spectrograph. We first examine the young $L$-band spectral sequence, most notably analyzing the evolution of the $Q$-branch of methane absorption feature at 3.3 $μ$m. We find the $Q$-branch feature first appears between L3 and L6, as previously seen in older field dwarfs. Secondly, we analyze how well various atmospheric models reproduce the $L$-band and published near-IR (0.7--2.5 $μ$m) spectra of our objects by fitting five different grids of model spectra to the data. Best-fit parameters for the combined near-IR and $L$-band data are compared to best-fit parameters for just the near-IR data, isolating the impact that the addition of the $L$-band has on the results. This addition notably causes a $\sim$100 K drop in the best-fit effective temperature. Also, when clouds and a vertical mixing rate ($K_{\mathrm{zz}}$) are included in the models, thick clouds and higher $K_{\mathrm{zz}}$ values are preferred. Five of our objects also have previously published effective temperatures and surface gravities derived using evolutionary models, age estimates, and bolometric luminosities. Comparing model spectra matching these parameters to our spectra, we find disequilibrium chemistry and clouds are needed to match these published effective temperatures. Three of these objects are members of AB Dor, allowing us to show the temperature dependence of the $Q$-branch of methane.