论文标题
石墨烯上原子的应变诱导的超流体过渡
Strain-induced superfluid transition for atoms on graphene
论文作者
论文摘要
沉积在原子较薄的底物上的骨气原子代表了外来量子多体物理学的操场,这是由于相互作用势的高度调节,原子尺度的性质。设计强颗粒间相互作用的能力可以导致物质的复杂集体原子状态的出现,在光学晶格中限制的稀原子气体中不可能。虽然众所周知,石墨烯上的吸附氦的第一层被永久锁定在固相中,但我们通过量子蒙特卡洛和平均场技术的结合来表明,简单的各向同性石墨烯晶格的扩展有效地解锁了大量的二维有序的固定性,不合格的固体,凝聚在质量上,并呈固体,并呈现良好,并呈现良好,并呈现良好。在实验可行的应变值下出现了物质的原子薄超流相尤为重要,并且潜在的超胚相阶段在相图上近距离接近。
Bosonic atoms deposited on atomically thin substrates represent a playground for exotic quantum many-body physics due to the highly-tunable, atomic-scale nature of the interaction potentials. The ability to engineer strong interparticle interactions can lead to the emergence of complex collective atomic states of matter, not possible in the context of dilute atomic gases confined in optical lattices. While it is known that the first layer of adsorbed helium on graphene is permanently locked into a solid phase, we show by a combination of quantum Monte Carlo and mean-field techniques, that simple isotropic graphene lattice expansion effectively unlocks a large variety of two-dimensional ordered commensurate, incommensurate, cluster atomic solid, and superfluid states for adsorbed atoms. It is especially significant that an atomically thin superfluid phase of matter emerges under experimentally feasible strain values, with potentially supersolid phases in close proximity on the phase diagram.