论文标题

用于形状引导生成3D形状和纹理的潜伏-NERF

Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures

论文作者

Metzer, Gal, Richardson, Elad, Patashnik, Or, Giryes, Raja, Cohen-Or, Daniel

论文摘要

近年来,文本指导的图像产生迅速发展,激发了文本指导形状生成的重大突破。最近,已经表明,使用得分蒸馏,可以成功地将指南文本引导为NERF模型生成3D对象。我们将分数蒸馏调整到公开可用的,计算高效的潜扩散模型,这些模型将整个扩散过程应用于预处理的自动编码器的紧凑型潜在空间。当NERF在图像空间中运行时,一种用于引导它们进行潜在分数蒸馏的天真解决方案将需要在每个指导步骤中编码为潜在空间。取而代之的是,我们建议将NERF带到潜在空间,从而产生潜在的nerf。分析我们的潜在-NERF,我们表明,尽管文本到3D模型可以产生令人印象深刻的结果,但它们本质上是不受欢迎的,并且可能缺乏指导或执行特定的3D结构的能力。为了协助和指导3D一代,我们建议使用素描形来指导我们的潜在-NERF:一个抽象的几何形状,该几何形状定义了所需对象的粗糙结构。然后,我们提出了将这种约束直接集成到潜在-NERF中的方法。文本和形状指导的独特组合可以增加对生成过程的控制。我们还表明,潜在分数蒸馏可以直接在3D网格上成功应用。这允许在给定的几何形状上产生高质量的纹理。我们的实验验证了我们不同形式的指导的力量以及使用潜在渲染的效率。实施可从https://github.com/eladrich/latent-nerf获得

Text-guided image generation has progressed rapidly in recent years, inspiring major breakthroughs in text-guided shape generation. Recently, it has been shown that using score distillation, one can successfully text-guide a NeRF model to generate a 3D object. We adapt the score distillation to the publicly available, and computationally efficient, Latent Diffusion Models, which apply the entire diffusion process in a compact latent space of a pretrained autoencoder. As NeRFs operate in image space, a naive solution for guiding them with latent score distillation would require encoding to the latent space at each guidance step. Instead, we propose to bring the NeRF to the latent space, resulting in a Latent-NeRF. Analyzing our Latent-NeRF, we show that while Text-to-3D models can generate impressive results, they are inherently unconstrained and may lack the ability to guide or enforce a specific 3D structure. To assist and direct the 3D generation, we propose to guide our Latent-NeRF using a Sketch-Shape: an abstract geometry that defines the coarse structure of the desired object. Then, we present means to integrate such a constraint directly into a Latent-NeRF. This unique combination of text and shape guidance allows for increased control over the generation process. We also show that latent score distillation can be successfully applied directly on 3D meshes. This allows for generating high-quality textures on a given geometry. Our experiments validate the power of our different forms of guidance and the efficiency of using latent rendering. Implementation is available at https://github.com/eladrich/latent-nerf

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源