论文标题

基于树层的图形类:正确的和弦图

Tree-layout based graph classes: proper chordal graphs

论文作者

Paul, Christophe, Protopapas, Evangelos

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Many standard graph classes are known to be characterized by means of layouts (a permutation of its vertices) excluding some patterns. Important such graph classes are among others: proper interval graphs, interval graphs, chordal graphs, permutation graphs, (co-)comparability graphs. For example, a graph $G=(V,E)$ is a proper interval graph if and only if $G$ has a layout $L$ such that for every triple of vertices such that $x\prec_L y\prec_L z$, if $xz\in E$, then $xy\in E$ and $yz\in E$. Such a triple $x$, $y$, $z$ is called an indifference triple and layouts excluding indifference triples are known as indifference layouts. In this paper, we investigate the concept of tree-layouts. A tree-layout $T_G=(T,r,ρ_G)$ of a graph $G=(V,E)$ is a tree $T$ rooted at some node $r$ and equipped with a one-to-one mapping $ρ_G$ between $V$ and the nodes of $T$ such that for every edge $xy\in E$, either $x$ is an ancestor of $y$ or $y$ is an ancestor of $x$. Clearly, layouts are tree-layouts. Excluding a pattern in a tree-layout is defined similarly as excluding a pattern in a layout, but now using the ancestor relation. Unexplored graph classes can be defined by means of tree-layouts excluding some patterns. As a proof of concept, we show that excluding non-indifference triples in tree-layouts yields a natural notion of proper chordal graphs. We characterize proper chordal graphs and position them in the hierarchy of known subclasses of chordal graphs. We also provide a canonical representation of proper chordal graphs that encodes all the indifference tree-layouts rooted at some vertex. Based on this result, we first design a polynomial time recognition algorithm for proper chordal graphs. We then show that the problem of testing isomorphism between two proper chordal graphs is in P, whereas this problem is known to be GI-complete on chordal graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源