论文标题

部分可观测时空混沌系统的无模型预测

Is Birkhoff's Theorem Valid in Einstein-Aether Theory?

论文作者

Chan, R., da Silva, M. F. A., Satheeshkumar, V. H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We attempt to answer whether Birkhoff's theorem (BT) is valid in the Einstein-Aether (EA) theory. The BT states that any spherically symmetric solution of the vacuum field equations must be static, unique, and asymptotically flat. For a general spherically symmetric metric with metric functions $A(r,t)$ \& $B(r,t)$, and aether components $a(r,t)$ \& $b(r,t)$, we prove the conditions for the staticity of spacetime using two different methods. We point out that BT is valid in EA theory only for special values of $c_1+c_3$, $c_1+c_4$, and $c_2$, where we can show that all these special cases are asymptotically flat. In particular, when the aether has only a temporal component, i.e., $b(r,t)=0$ and the $c_{14} \neq 0$ case gives us spherically symmetric static black holes without horizons; that is, they have naked singularities, at least for special values of $c_{14}$. Thus, the cosmic censorship conjecture is violated for the case BT holds. However, when we have an aether vector with temporal and radial components, we only prove that the staticity and the flatness at infinity hold for a special metric and particular combination of the aether parameters. For this case, there exist universal horizons instead of naked singularities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源