论文标题
超轻暗物质可以解释银河盘的年龄速度分散关系:经过修订和改进的治疗
Can ultralight dark matter explain the age-velocity dispersion relation of the Milky Way disc: A revised and improved treatment
论文作者
论文摘要
超高轴状的颗粒$ M_A \ SIM \ SIM 10^{ - 22} $ eV或模糊的暗物质(FDM),与宇宙学量表上的冷暗物质(CDM)相对表现,并且表现出可以减轻(sub-)cdm scale cdm的KPCSize de Broglie波长。 FDM光环内的子结构会引起引力电势扰动,从而导致出色的加热足以说明哈勃时期的银河盘增厚,如Church等人的首次证明。我们提出了一种更复杂的治疗方法,其中包含了银河系的完整重子和暗物质分布,并采用了最近的Gaia,Apogee和Lamost Surveys推断出的恒星光盘运动学。无处不在的密度颗粒和次荷兰通道分别驱动内盘的内盘增厚和外盘的耀斑,从而导致观察一致的“ U形”圆盘垂直速度分散曲线,其全局最小值位于太阳半径附近。太阳附近观察到的年龄速度分散关系可以通过FDM-Substructure诱导的加热来解释,并放置排除限制的$ M_A \ GTRSIM 0.4 \ times10^{ - 22} $ ev。我们评估经验核心关系,FDM Subhalo质量功能和潮汐剥离以及出色的加热估算中的非平凡不确定性。质量范围$ m_a \ simeq 0.5-0.7 \ times10^{ - 22} $ eV受到观察到的厚光盘运动学所偏爱的,从矮人的密度概况,恒星流,恒星式的卫星种群中推断出的几个排除范围,这可能会由于造成的卫星而大大放松。另外,强烈的各向异性加热可以帮助解释超薄椎间盘星系的形成。
Ultralight axion-like particles $m_a \sim 10^{-22}$ eV, or Fuzzy Dark Matter (FDM), behave comparably to cold dark matter (CDM) on cosmological scales and exhibit a kpc-size de Broglie wavelength capable of alleviating established (sub-)galactic-scale problems of CDM. Substructures inside an FDM halo incur gravitational potential perturbations, resulting in stellar heating sufficient to account for the Galactic disc thickening over a Hubble time, as first demonstrated by Church et al. We present a more sophisticated treatment that incorporates the full baryon and dark matter distributions of the Milky Way and adopts stellar disc kinematics inferred from recent Gaia, APOGEE, and LAMOST surveys. Ubiquitous density granulation and subhalo passages respectively drive inner disc thickening and flaring of the outer disc, resulting in an observationally consistent `U-shaped' disc vertical velocity dispersion profile with the global minimum located near the solar radius. The observed age-velocity dispersion relation in the solar vicinity can be explained by the FDM-substructure-induced heating and places an exclusion bound $m_a \gtrsim 0.4\times10^{-22}$ eV. We assess non-trivial uncertainties in the empirical core-halo relation, FDM subhalo mass function and tidal stripping, and stellar heating estimate. The mass range $m_a\simeq 0.5-0.7\times10^{-22}$ eV favoured by the observed thick disc kinematics is in tension with several exclusion bounds inferred from dwarf density profiles, stellar streams, and Milky Way satellite populations, which could be significantly relaxed due to the aforesaid uncertainties. Additionally, strongly anisotropic heating could help explain the formation of ultra-thin disc galaxies.