论文标题

基于回归的蒙特卡洛整合

Regression-based Monte Carlo Integration

论文作者

Salaün, Corentin, Gruson, Adrien, Hua, Binh-Son, Hachisuka, Toshiya, Singh, Gurprit

论文摘要

蒙特卡洛整合通常被解释为使用随机样品的期望值的估计量。在微积分中存在一种替代解释,其中蒙特卡洛整合可以看作是从整体的随机评估中估算\ emph {constant}函数 - 将整合到原始积分中。积分平均值定理指出,此\ emph {constant}函数应为整数的平均值(或期望)。由于这两种解释都会导致相同的估计量,因此很少关注以微积分为导向的解释。我们表明,面向计算的解释实际上意味着与\ emph {complect}函数相比,与\ emph {constant}相比,使用更有效的估计量来构造更有效的估计器进行蒙特卡洛集成。我们基于此解释构建了一个新的估计器,并将我们的估计器与在整合体的随机样本上以最小二乘回归的方式控制变体。与先前的工作不同,我们最终的估计器比\ emph {prover overable}比传统的蒙特卡洛估计器更好或等于。为了证明我们的方法的强度,我们引入了一个实用的估计器,该估计量可以作为常规蒙特卡洛整合的简单替换。我们在实验中验证了各种光传输积分的框架。该代码可在\ url {https://github.com/iribis/regressionmc}上获得。

Monte Carlo integration is typically interpreted as an estimator of the expected value using stochastic samples. There exists an alternative interpretation in calculus where Monte Carlo integration can be seen as estimating a \emph{constant} function -- from the stochastic evaluations of the integrand -- that integrates to the original integral. The integral mean value theorem states that this \emph{constant} function should be the mean (or expectation) of the integrand. Since both interpretations result in the same estimator, little attention has been devoted to the calculus-oriented interpretation. We show that the calculus-oriented interpretation actually implies the possibility of using a more \emph{complex} function than a \emph{constant} one to construct a more efficient estimator for Monte Carlo integration. We build a new estimator based on this interpretation and relate our estimator to control variates with least-squares regression on the stochastic samples of the integrand. Unlike prior work, our resulting estimator is \emph{provably} better than or equal to the conventional Monte Carlo estimator. To demonstrate the strength of our approach, we introduce a practical estimator that can act as a simple drop-in replacement for conventional Monte Carlo integration. We experimentally validate our framework on various light transport integrals. The code is available at \url{https://github.com/iribis/regressionmc}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源