论文标题

利用设备和音频数据以用用户吸引的听力上下文标记音乐

Exploiting Device and Audio Data to Tag Music with User-Aware Listening Contexts

论文作者

Ibrahim, Karim M., Epure, Elena V., Peeters, Geoffroy, Richard, Gaël

论文摘要

随着音乐越来越多地在音乐流媒体平台上越来越多,人们已经开始具有与众不同的聆听情况(也称为上下文)的独特偏好。因此,在向用户推荐音乐时,考虑用户的情况一直引起人们的兴趣。以前的工作已提出了用户意识的自动吸引力,以从音乐内容和用户的全局听力偏好中推断出与情况相关的标签。但是,在实用的音乐检索系统中,只能通过假设上下文类明确地提供了自动盖。在这项工作中,为了设计一个完全自动化的音乐检索系统,我们建议从他们的流数据中消除用户的听力信息。也就是说,我们提出了一个可以在特定时间为用户生成情境播放列表的系统1)通过利用用户意识的音乐自动吸引力,以及2)通过自动从流数据(例如设备,网络)和用户的常规配置文件(例如年龄)自动从流数据(例如设备,网络)中推断出用户的情况。实验表明,这种背景感知的个性化音乐检索系统是可行的,但是在新用户,新轨道或上下文类别增加时,性能会降低。

As music has become more available especially on music streaming platforms, people have started to have distinct preferences to fit to their varying listening situations, also known as context. Hence, there has been a growing interest in considering the user's situation when recommending music to users. Previous works have proposed user-aware autotaggers to infer situation-related tags from music content and user's global listening preferences. However, in a practical music retrieval system, the autotagger could be only used by assuming that the context class is explicitly provided by the user. In this work, for designing a fully automatised music retrieval system, we propose to disambiguate the user's listening information from their stream data. Namely, we propose a system which can generate a situational playlist for a user at a certain time 1) by leveraging user-aware music autotaggers, and 2) by automatically inferring the user's situation from stream data (e.g. device, network) and user's general profile information (e.g. age). Experiments show that such a context-aware personalized music retrieval system is feasible, but the performance decreases in the case of new users, new tracks or when the number of context classes increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源