论文标题
关于操纵尺度间阶段与节能湍流减少之间的关系
On the relationship between manipulated inter-scale phase and energy-efficient turbulent drag reduction
论文作者
论文摘要
我们研究了Marusic等人报道的高雷诺数中尺度相互作用在高雷诺数皮肤摩擦减少策略中的作用。 (Nat。Commun。,第12卷,2021年)。该策略涉及在墙壁上施加相对较低的流向跨度速度的流动波,以启动阻力产生的外尺度。事实证明,这种方法比直接靶向阻力产生的内尺度的常规方法更节能,这通常需要在较高的频率下驱动。值得注意的是,观察到,在低频下驱动外部尺度会导致产生主要阻力内尺度的大幅衰减,这表明该驱动会影响固有的非线性内部耦合,固有地存在于墙壁结合的流中。在本研究中,我们发现,通过施加跨度壁振荡,增加的阻力减少始终与内部和外部尺度之间的耦合增加有关。这种增强的耦合是通过操纵这些三元连接量表之间的相位关系而出现的,而致动迫使整个含能量的尺度范围从内部(粘性)到外部(惯性)尺度,以至于更具相常。我们还发现,通过操纵尺度相位关系,这种非线性耦合的类似增强是随着规范湍流边界层的雷诺数的增加而发生的。这表明在非常高的雷诺数下,节能降低策略的功效提高了,在该数字中,通电的外部尺度已知可以更强烈地叠加并调节内部尺度。因此,利用尺度间的相互作用提供了一种合理的机制,可在高雷诺数下实现节能减少。
We investigate the role of inter-scale interactions in the high-Reynolds number skin-friction drag reduction strategy reported by Marusic et al. (Nat. Commun., vol. 12, 2021). The strategy involves imposing relatively low-frequency streamwise travelling waves of spanwise velocity at the wall to actuate the drag generating outer-scales. This approach has proven to be more energy-efficient than the conventional method of directly targeting the drag producing inner-scales, which typically requires actuation at higher frequencies. Notably, it is observed that actuating the outer-scales at low frequencies leads to a substantial attenuation of the major drag producing inner-scales, suggesting that the actuations affect the non-linear inner-outer coupling inherently existing in wall-bounded flows. In the present study, we find that increased drag reduction, through imposition of spanwise wall oscillations, is always associated with an increased coupling between the inner and outer scales. This enhanced coupling emerges through manipulation of the phase relationships between these triadically linked scales, with the actuation forcing the entire range of energy-containing scales, from the inner (viscous) to the outer (inertial) scales, to be more in-phase. We also find that a similar enhancement of this non-linear coupling, via manipulation of the inter-scale phase relationships, occurs with increasing Reynolds number for canonical turbulent boundary layers. This indicates improved efficacy of the energy-efficient drag reduction strategy at very high Reynolds numbers, where the energised outer-scales are known to more strongly superimpose and modulate the inner-scales. Leveraging the inter-scale interactions, therefore, offers a plausible mechanism for achieving energy-efficient drag reduction at high Reynolds numbers.