论文标题

量子神经形态计算的表达性量子感知

Expressive Quantum Perceptrons for Quantum Neuromorphic Computing

论文作者

Bravo, Rodrigo Araiza, Najafi, Khadijeh, Patti, Taylor L., Gao, Xun, Yelin, Susanne F.

论文摘要

量子神经形态计算(QNC)是量子机业学习(QML)的子场,该量子大利用固有的系统动力学。结果,QNC可以在当代,嘈杂的量子硬件上运行,并准备在短期内实现具有挑战性的算法。 QNC中的一个关键问题是表征确保表达量子神经形态计算的必要动力学。我们通过为QNC体系结构提出一个构建块来解决这个问题,我们称之为Quantum Perceptrons(QPS)。我们提出的QP基于与可调耦合常数的相互作用量子器的模拟动力学计算。我们表明,QP具有限制资源,是一个量子等同于经典感知器,这是一个简单的数学模型,用于神经元,它是各种机器学习体系结构的基础。此外,我们表明QP在理论上能够产生任何单一操作。因此,QP在计算上比其经典对应物更具表现力。结果,从理论上讲,QNC架构构建了我们的QPS。我们引入了一种缓解QP中贫瘠的高原的技术,称为纠缠稀疏。我们通过将QPS应用于许多QML问题,包括计算量子状态之间的内部产品,能量测量和时间逆转来证明QPS的有效性。最后,我们讨论了QP的潜在实现,以及如何使用它们来构建更复杂的QNC体系结构。

Quantum neuromorphic computing (QNC) is a sub-field of quantum machine learning (QML) that capitalizes on inherent system dynamics. As a result, QNC can run on contemporary, noisy quantum hardware and is poised to realize challenging algorithms in the near term. One key issue in QNC is the characterization of the requisite dynamics for ensuring expressive quantum neuromorphic computation. We address this issue by proposing a building block for QNC architectures, what we call quantum perceptrons (QPs). Our proposed QPs compute based on the analog dynamics of interacting qubits with tunable coupling constants. We show that QPs are, with restricted resources, a quantum equivalent to the classical perceptron, a simple mathematical model for a neuron that is the building block of various machine learning architectures. Moreover, we show that QPs are theoretically capable of producing any unitary operation. Thus, QPs are computationally more expressive than their classical counterparts. As a result, QNC architectures built our of QPs are, theoretically, universal. We introduce a technique for mitigating barren plateaus in QPs called entanglement thinning. We demonstrate QPs' effectiveness by applying them to numerous QML problems, including calculating the inner products between quantum states, energy measurements, and time-reversal. Finally, we discuss potential implementations of QPs and how they can be used to build more complex QNC architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源