论文标题

在可相互作用和不可整合的自旋1/2 XYZ链中,缓慢放松超定点相关器

Slow relaxation of out-of-time-ordered correlators in interacting integrable and nonintegrable spin-1/2 XYZ chains

论文作者

Balachandran, Vinitha, Santos, Lea F., Rigol, Marcos, Poletti, Dario

论文摘要

超时有序的相关器(OTOC)有助于表征量子信息的争夺,通常在不可整合系统的背景下进行研究。在这项工作中,我们比较了OTOC在没有经典对应物的方案中与可相互作用和不可集成的自旋1/2 XYZ链相互作用的松弛动力学。在这两种链中,使用诸如$ u(1)$和超对称性的对称性的存在,我们考虑了OTOC操作员与Hamiltonian不重叠或不重叠的政权。我们表明,当没有(没有)重叠的情况下,OTOC的放松是缓慢的(快速),而与链条是不可集成还是不可整合。当慢速时,我们表明OTOC动力学遵循两点相关器的动力学。我们使用数值计算研究了OTOC的动力学,并从对角的性质和相应本地运算符的欧吉尼巴斯(Egengon)元素元素的特性和分析见解中获得了分析见解。

Out-of-time ordered correlators (OTOCs) help characterize the scrambling of quantum information and are usually studied in the context of nonintegrable systems. In this work, we compare the relaxation dynamics of OTOCs in interacting integrable and nonintegrable spin-1/2 XYZ chains in regimes without a classical counterpart. In both kinds of chains, using the presence of symmetries such as $U(1)$ and supersymmetry, we consider regimes in which the OTOC operators overlap or not with the Hamiltonian. We show that the relaxation of the OTOCs is slow (fast) when there is (there is not) an overlap, independently of whether the chain is integrable or nonintegrable. When slow, we show that the OTOC dynamics follows closely that of the two-point correlators. We study the dynamics of OTOCs using numerical calculations, and gain analytical insights from the properties of the diagonal and of the off-diagonal matrix elements of the corresponding local operators in the energy eigenbasis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源