论文标题

采用动态的合成性方法,用于在遥感中使用异质系统

Towards a Dynamic Composability Approach for using Heterogeneous Systems in Remote Sensing

论文作者

Altintas, Ilkay, Perez, Ismael, Mishin, Dmitry, Trouillaud, Adrien, Irving, Christopher, Graham, John, Tatineni, Mahidhar, DeFanti, Thomas, Strande, Shawn, Smarr, Larry, Norman, Michael L.

论文摘要

受数据和计算进步的影响,科学实践越来越多地涉及机器学习和人工智能驱动的方法,该方法还需要系统,科学和服务级别的专门功能,除了传统的大容量超级计算方法外。围绕以数据为中心的应用程序的合成性构建的最新分布式体系结构导致了一个新的生态系统进行容器协调和集成。但是,现有超级计算环境的应用程序开发管道与这些新的动态环境之间仍然存在鸿沟,这些环境通过可访问,便携式和可重新编程的接口来分解流体资源池。为了进一步推进数据驱动的科学实践,以实现更有效的计算和特定科学领域的可用工具,需要采用异质系统动态合成性的新方法。在本文中,我们提出了一种在科学计算,人工智能(AI)和遥感领域之间在交集中使用可组合系统的新方法。我们描述了一个可组合基础架构的第一个工作示例的结构,该基础架构将NSF资助的超级计算机与基于Kubernetes的GPU GEO分布式群集Nautilus联合使用。我们还总结了野火建模中的一个案例研究,该案例研究表明了这种新基础架构在科学工作流程中的应用:一个组成的系统,该系统将边缘传感,AI和计算功能的见解与物理驱动的模拟相桥接。

Influenced by the advances in data and computing, the scientific practice increasingly involves machine learning and artificial intelligence driven methods which requires specialized capabilities at the system-, science- and service-level in addition to the conventional large-capacity supercomputing approaches. The latest distributed architectures built around the composability of data-centric applications led to the emergence of a new ecosystem for container coordination and integration. However, there is still a divide between the application development pipelines of existing supercomputing environments, and these new dynamic environments that disaggregate fluid resource pools through accessible, portable and re-programmable interfaces. New approaches for dynamic composability of heterogeneous systems are needed to further advance the data-driven scientific practice for the purpose of more efficient computing and usable tools for specific scientific domains. In this paper, we present a novel approach for using composable systems in the intersection between scientific computing, artificial intelligence (AI), and remote sensing domain. We describe the architecture of a first working example of a composable infrastructure that federates Expanse, an NSF-funded supercomputer, with Nautilus, a Kubernetes-based GPU geo-distributed cluster. We also summarize a case study in wildfire modeling, that demonstrates the application of this new infrastructure in scientific workflows: a composed system that bridges the insights from edge sensing, AI and computing capabilities with a physics-driven simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源