论文标题

在$ \ Mathcal {a} _g $中,曲线的Zilber-Pink猜想的某些情况

Some cases of the Zilber-Pink conjecture for curves in $\mathcal{A}_g$

论文作者

Papas, Georgios

论文摘要

在我们在\ cite {papas2022height}中的工作之后,我们扩展了Y.André在他的开创性研究专着中建立的高度界限\ cite \ cite {andre1989g} {andre1989g},以$ 1 $ - 标准的Abelian品种的参数定义了数字领域。在我们的博览会中,我们不再假设家庭在某个时候获得完全乘法的减少,就像安德烈的最初结果一样。 作为这些高度边界的推论,我们以C. Daw和M. Orr的最新结果为基础,在$ \ Mathcal {a} _g $中获得Zilber-Pink-type的无条件结果。

Following our work in \cite{papas2022height}, we extend the height bounds established by Y. André in his seminal research monograph \cite{andre1989g} for $1$-parameter families of abelian varieties defined over number fields. In our exposition we no longer assume that the family acquires completely multiplicative reduction at some point, as in André's original result. As a corollary of these height bounds, we obtain unconditional results of Zilber-Pink-type for curves in $\mathcal{A}_g$, building upon recent results of C. Daw and M. Orr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源