论文标题

重新审视线性哈米尔顿港DAE系统

Linear port-Hamiltonian DAE systems revisited

论文作者

van der Schaft, Arjan, Mehrmann, Volker

论文摘要

哈米尔顿港系统理论为多物理系统的建模,模拟和控制提供了系统的方法。代数约束的融合导致了哈米尔顿港差分 - 代数方程(DAE)系统的多种定义。本文在Gernandt,Haller&Reis(2021)和Mehrmann&van der Schaft(2022)中介绍了结果的扩展,并在最大单调结构的背景下进行了扩展,并表明任何此类空间都可以写成Dirac和电阻结构的组成。此外,提供了适当的坐标表示以及相关传输函数的显式表达式。

Port-Hamiltonian systems theory provides a systematic methodology for the modeling, simulation and control of multi-physics systems. The incorporation of algebraic constraints has led to a multitude of definitions of port-Hamiltonian differential-algebraic equations (DAE) systems. This paper presents extensions of results in Gernandt, Haller & Reis (2021) and Mehrmann & Van der Schaft (2022) in the context of maximally monotone structures and shows that any such space can be written as composition of a Dirac and a resistive structure. Furthermore, appropriate coordinate representations are presented as well as explicit expressions for the associated transfer functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源