论文标题
具有单数非线性的大型非局部椭圆方程
A large class of nonlocal elliptic equations with singular nonlinearities
论文作者
论文摘要
在这项工作中,我们解决了方程式$ \ Mathbb {l}_γ^s u = \ Mathcal {f}(u)$的积极弱对解决方案的存在问题,在$ c^2 $有限的域$ω\ subset \ subset \ subset \ subbb {r} r}^n $或适当的条件下,并与适当的条件一起构成。操作员$ \ mathbb {l}_γ^s $属于一般的非本地运算符类别,包括典型的分数拉普拉斯人,例如限制的分数laplacian,审查的分数laplacian和频谱分数laplacian laplacian。非线性术语$ \ MATHCAL {f}(u)$涵盖了三个不同的非线性融合:纯粹的非线性$ \ Mathcal {f}(f}(u)= u^{ - q} $($ q> 0 $),具有源$ \ Mathcal的单次非线性,一种单格的非线性,具有吸收术语$ \ mathcal {f}(u)= u^{ - q} -g(u)$的单数非线性。基于对与$ \ mathbb {l}_γ^s $相关的绿色内核的微妙分析,我们开发了一种新的统一方法,使我们有权为方程式$ \ mathbb {l}_γ^S u = \ mathcal {f}(f}(u)$构建理论。特别是,我们显示了两个关键指数的存在$ q^{\ ast} _ {s,γ} $和$ q^{\ ast \ ast \ ast} _ {s,γ} $,通过其边界行为提供了相当完整的弱双重解决方案的分类。讨论了各种类型的非局部运算符,以说明我们理论的广泛适用性。
In this work, we address the questions of existence, uniqueness, and boundary behavior of the positive weak-dual solution of equation $\mathbb{L}_γ^s u = \mathcal{F}(u)$, posed in a $C^2$ bounded domain $Ω\subset \mathbb{R}^N$, with appropriate homogeneous boundary or exterior Dirichlet conditions. The operator $\mathbb{L}_γ^s$ belongs to a general class of nonlocal operators including typical fractional Laplacians such as restricted fractional Laplacian, censored fractional Laplacian and spectral fractional Laplacian. The nonlinear term $\mathcal{F}(u)$ covers three different amalgamation of nonlinearities: a purely singular nonlinearity $\mathcal{F}(u) = u^{-q}$ ($q>0$), a singular nonlinearity with a source term $\mathcal{F}(u) = u^{-q} + f(u)$, and a singular nonlinearity with an absorption term $\mathcal{F}(u) = u^{-q}-g(u)$. Based on a delicate analysis of the Green kernel associated to $\mathbb{L}_γ^s$, we develop a new unifying approach that empowered us to construct a theory for equation $\mathbb{L}_γ^s u = \mathcal{F}(u)$. In particular, we show the existence of two critical exponents $q^{\ast}_{s, γ}$ and $q^{\ast \ast}_{s, γ}$ which provides a fairly complete classification of the weak-dual solutions via their boundary behavior. Various types of nonlocal operators are discussed to exemplify the wide applicability of our theory.