论文标题
梯形平均值的慢速收敛
Slow convergences of ergodic averages
论文作者
论文摘要
伯克霍夫(Birkhoff)的定理指出,对于千古的汽车,平均时间融合了空间平均水平。给定序列$ψ(n)\至+0 $,U。Krengel证明,对于任何Ergodic自动形态,都有一个指标,因此相应的时间平均为A.E.费率慢于$ψ$。我们再次证明了类似的陈述,回答了I. Podvigin的问题。
Birkhoff's theorem states that for an ergodic automorphism, the time averages converge to the space average. Given sequence $ψ(n)\to+0$, U. Krengel proved that for any ergodic automorphism there is an indicator such that the corresponding time averages converged a.e. with a rate slower than $ψ$. We prove again similar statements answering a question of I. Podvigin in passing.