论文标题

生成最小扰动的文本对手

Generating Textual Adversaries with Minimal Perturbation

论文作者

Zhao, Xingyi, Zhang, Lu, Xu, Depeng, Yuan, Shuhan

论文摘要

最近的研究提出了许多文本数据的单词级对抗攻击方法。但是,由于大量的搜索空间由候选单词组成,因此现有方法面临着在制作对抗性对应物时保留文本语义的问题。在本文中,我们制定了一种新颖的攻击策略,以找到与原始文本相似的对抗文本,同时引入最小的扰动。理由是我们期望具有小扰动的对抗文本可以更好地保留原始文本的语义含义。实验表明,与最新的攻击方法相比,我们的方法在四个基准数据集中达到了更高的成功率和较低的扰动率。

Many word-level adversarial attack approaches for textual data have been proposed in recent studies. However, due to the massive search space consisting of combinations of candidate words, the existing approaches face the problem of preserving the semantics of texts when crafting adversarial counterparts. In this paper, we develop a novel attack strategy to find adversarial texts with high similarity to the original texts while introducing minimal perturbation. The rationale is that we expect the adversarial texts with small perturbation can better preserve the semantic meaning of original texts. Experiments show that, compared with state-of-the-art attack approaches, our approach achieves higher success rates and lower perturbation rates in four benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源