论文标题

具有多元和多元敏感属性的公平学习的实用方法

Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes

论文作者

Liu, Tennison, Chan, Alex J., van Breugel, Boris, van der Schaar, Mihaela

论文摘要

重要的是要确保在现实世界中部署的机器学习算法不会导致不公平或意想不到的社会后果。 Fair ML主要集中于在属性和目标结果都是二进制的简单设置中对单个属性的保护。但是,在许多实际问题中的实际应用需要同时保护多个敏感属性,这些敏感属性通常不仅是二进制的,而且是连续或分类的。为了解决这项更具挑战性的任务,我们介绍了Faircocco,这是基于跨协同运营商的公平措施,用于再现核Hilbert空间。这导致了两个实用的工具:首先,Faircocco分数,这是一种归一化度量,可以量化具有任意类型的单个或多个敏感属性的设置中的公平性;其次,可以将随后的正规化项纳入任意学习目标以获得公平的预测因素。这些贡献解决了算法公平文献中的关键差距,并且我们从经验上证明了针对现实世界数据集平衡预测能力和公平性的最先进技术的一致改进。

It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences. Fair ML has largely focused on the protection of single attributes in the simpler setting where both attributes and target outcomes are binary. However, the practical application in many a real-world problem entails the simultaneous protection of multiple sensitive attributes, which are often not simply binary, but continuous or categorical. To address this more challenging task, we introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces. This leads to two practical tools: first, the FairCOCCO Score, a normalised metric that can quantify fairness in settings with single or multiple sensitive attributes of arbitrary type; and second, a subsequent regularisation term that can be incorporated into arbitrary learning objectives to obtain fair predictors. These contributions address crucial gaps in the algorithmic fairness literature, and we empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源