论文标题

使用许多缺失值的患者旅程数据,用于健康风险预测的综合卷积和经常性神经网络

Integrated Convolutional and Recurrent Neural Networks for Health Risk Prediction using Patient Journey Data with Many Missing Values

论文作者

Liu, Yuxi, Qin, Shaowen, Yepes, Antonio Jimeno, Shao, Wei, Zhang, Zhenhao, Salim, Flora D.

论文摘要

近年来,预测使用电子健康记录(EHR)的患者的健康风险引起了很大的关注,尤其是随着深度学习技术的发展。健康风险是指特定患者特定健康结果的可能性。预测的风险可用于支持医疗保健专业人员的决策。 EHR是结构化的患者旅程数据。每个患者的旅程都包含按时间顺序排列的临床事件,在每个临床事件中,都有一组临床/医疗活动。由于患者状况和治疗需求的变化,EHR患者旅程数据具有固有的高度缺失,其中包含重要信息,影响了变量之间的关系,包括时间。现有的基于深度学习的模型在学习关系时为缺失值生成估算的值。但是,EHR患者旅程数据中的估算数据可能会扭曲原始EHR患者旅程数据的临床含义,从而导致分类偏差。本文提出了一种新型的端到端方法,用于使用综合卷积和经常性神经网络对EHR患者旅程数据进行建模。我们的模型可以在每个患者旅程中捕获长期和短期的时间模式,并有效地处理EHR数据中的高度丢失,而无需任何归类数据。与现有的基于最新的基于插补的预测方法相比,使用两个现实世界数据集上提出的模型的广泛实验结果表明了稳健的性能以及出色的预测准确性。

Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源