论文标题

SIS流行过程中的动态固化和网络设计

Dynamic Curing and Network Design in SIS Epidemic Processes

论文作者

Yi, Yuhao, Shan, Liren, Wang, Shijie, Paré, Philip E., Johansson, Karl H.

论文摘要

本文研究了动态固化策略和相应的网络设计问题的有效算法,以确保在易感感染敏感(SIS)模型中快速灭绝流行病。我们考虑了基于马尔可夫过程的SIS流行模型。我们根据Drakopoulos,Ozdaglar和Tsitsiklis(2014)提出的基于计算有效的固化算法。由于相应的优化问题是NP-HARD,因此寻找最佳策略对于大图很难。我们根据建议的动态固化算法的固化预算提供近似保证。我们还向人口组提出了固化算法。 当总感染率很高时,原始的固化策略包括一个等待期,在该期限内无需采取措施来减轻利差,直到速率减慢。为了避免等待期,我们研究网络设计问题,以通过删除边缘或减少边缘的重量来降低总感染率。然后,由于整个感染率受网络设计的限制,因此固化过程变得连续。我们为所考虑的网络设计问题提供可证明的保证算法。总而言之,所提出的固化和网络设计算法共同提供了一种有效且有效的方法,可以减轻网络中的SIS流行差异。

This paper studies efficient algorithms for dynamic curing policies and the corresponding network design problems to guarantee the fast extinction of epidemic spread in a susceptible-infected-susceptible (SIS) model. We consider a Markov process-based SIS epidemic model. We provide a computationally efficient curing algorithm based on the curing policy proposed by Drakopoulos, Ozdaglar, and Tsitsiklis (2014). Since the corresponding optimization problem is NP-hard, finding optimal policies is intractable for large graphs. We provide approximation guarantees on the curing budget of the proposed dynamic curing algorithm. We also present a curing algorithm fair to demographic groups. When the total infection rate is high, the original curing policy includes a waiting period in which no measure is taken to mitigate the spread until the rate slows down. To avoid the waiting period, we study network design problems to reduce the total infection rate by deleting edges or reducing the weight of edges. Then the curing processes become continuous since the total infection rate is restricted by network design. We provide algorithms with provable guarantees for the considered network design problems. In summary, the proposed curing and network design algorithms together provide an effective and computationally efficient approach that mitigates SIS epidemic spread in networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源