论文标题

在Hermitian歧管的高杜州曲率上

On the Gauduchon Curvature of Hermitian Manifolds

论文作者

Broder, Kyle, Stanfield, James

论文摘要

结果表明,许多结果,以前认为是Lichnerowicz Ricci曲率的特性,对于所有Gauduchon连接的RICCI曲率都保留。我们证明存在$ t $ -Gauduchon ricci-flat指标,该指标暂停了紧凑型Sasaki-ineinstein歧管,用于所有$ t \ in( - \ infty,1)$;特别是,对于Bismut,最低限度和荒诞的形成性连接。获得了Gauduchon Holomorthic截面曲率的单调定理,这说明了Chern连接的最大特性,并提供了有关已知现象的有关超质性和理性曲线存在的见解。此外,我们显示了冬宫度量标准的刚性结果,这些指标具有一对宽阔的圆形截面曲线,这些曲线相等,阐明了在Chen-nie最近工作中隐含的双重性。

It is shown that many results, previously believed to be properties of the Lichnerowicz Ricci curvature, hold for the Ricci curvature of all Gauduchon connections. We prove the existence of $t$--Gauduchon Ricci-flat metrics on the suspension of a compact Sasaki--Einstein manifold, for all $t \in (-\infty,1)$; in particular, for the Bismut, Minimal, and Hermitian conformal connection. A monotonicity theorem is obtained for the Gauduchon holomorphic sectional curvature, illustrating a maximality property for the Chern connection and furnishing insight into known phenomena concerning hyperbolicity and the existence of rational curves. Moreover, we show a rigidity result for Hermitian metrics which have a pair of Gauduchon holomorphic sectional curvatures that are equal, elucidating a duality implicit in the recent work of Chen--Nie.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源