论文标题

在带有变压器的星系簇中检测强透明的弧形

Detection of Strongly Lensed Arcs in Galaxy Clusters with Transformers

论文作者

Jia, Peng, Sun, Ruiqi, Li, Nan, Song, Yu, Ning, Runyu, Wei, Hongyan, Luo, Rui

论文摘要

星系簇中的强烈镜头探测了质量中暗物质光环的密集核的性能,否则无法使用透隙水平的遥远宇宙和空间分辨率,并独立限制了宇宙学模型。下一代的大型天空成像调查有望发现数千个集群尺度的强镜,这将带来前所未有的机会,用于应用群集规模的强镜来解决天体物理和宇宙学问题。但是,大型数据集挑战天文学家,以识别和提取强烈的镜头信号,尤其是强烈镜头,因为它们的复杂性和多样性。因此,我们提出了一个框架来检测簇尺度强烈镜头的弧形,该弧含有基于变压器的检测算法和图像模拟算法。我们通过模拟将强烈镜头弧形弧形弧形弧形的先前信息嵌入到训练数据中,然后使用模拟图像训练检测算法。我们使用训练有素的变压器从模拟和真实数据中检测出强烈镜头的弧线。结果表明,我们的方法可以达到99.63%的准确率,90.32%的召回率,85.37%的精度率和0.23%的假阳性率从模拟图像中检测到强镜的弧线,并且在实际观察图像中几乎可以检测到几乎所有强烈镜头的弧。此外,使用解释方法,我们表明我们的方法可以识别嵌入模拟数据中的重要信息。下一步,为了测试方法的可靠性和可用性,我们将将其应用于可用的观察结果(例如DESI传统成像调查)和即将进行的大规模天空调查的模拟数据,例如Euclid和CSST。

Strong lensing in galaxy clusters probes properties of dense cores of dark matter halos in mass, studies the distant universe at flux levels and spatial resolutions otherwise unavailable, and constrains cosmological models independently. The next-generation large scale sky imaging surveys are expected to discover thousands of cluster-scale strong lenses, which would lead to unprecedented opportunities for applying cluster-scale strong lenses to solve astrophysical and cosmological problems. However, the large dataset challenges astronomers to identify and extract strong lensing signals, particularly strongly lensed arcs, because of their complexity and variety. Hence, we propose a framework to detect cluster-scale strongly lensed arcs, which contains a transformer-based detection algorithm and an image simulation algorithm. We embed prior information of strongly lensed arcs at cluster-scale into the training data through simulation and then train the detection algorithm with simulated images. We use the trained transformer to detect strongly lensed arcs from simulated and real data. Results show that our approach could achieve 99.63 % accuracy rate, 90.32 % recall rate, 85.37 % precision rate and 0.23 % false positive rate in detection of strongly lensed arcs from simulated images and could detect almost all strongly lensed arcs in real observation images. Besides, with an interpretation method, we have shown that our method could identify important information embedded in simulated data. Next step, to test the reliability and usability of our approach, we will apply it to available observations (e.g., DESI Legacy Imaging Surveys) and simulated data of upcoming large-scale sky surveys, such as the Euclid and the CSST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源