论文标题
标准上的弱近似
Weak approximation on the norm one torus
论文作者
论文摘要
对于任何Abelian Group $ a $,我们证明了一个差异公式,用于$ a $ a extensions $ k/\ mathbb {q} $的有界判别的$,因此相关的规范一个torus $ r_ {k/\ mathbb {q}}}}^1 \ mathbb {g Mathbb {g} _m $ nofe offerimation。我们还能够在HASSE规范原则上产生新的结果,并在Malle的猜想的某些情况下为领先常数提供新的明确值。
For any abelian group $A$, we prove an asymptotic formula for the number of $A$-extensions $K/\mathbb{Q}$ of bounded discriminant such that the associated norm one torus $R_{K/\mathbb{Q}}^1 \mathbb{G}_m$ satisfies weak approximation. We are also able to produce new results on the Hasse norm principle and to provide new explicit values for the leading constant in some instances of Malle's conjecture.