论文标题

Metabelian nilpotent基团的亚riemannian测量流的符号减少

Sympletic reduction of the sub-Riemannian geodesic flow for metabelian nilpotent groups

论文作者

Bravo-Doddoli, Alejandro, Donne, Enrico Le, Paddeu, Nicola

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider nilpotent Lie groups for which the derived subgroup is abelian. We equip them with subRiemannian metrics and we study the normal Hamiltonian flow on the cotangent bundle. We show a correspondence between normal trajectories and polynomial Hamiltonians in some euclidean space. We use the aforementioned correspondence to give a criterion for the integrability of the normal Hamiltonian flow. As an immediate consequence, we show that in Engel-type groups the flow of the normal Hamiltonian is integrable. For Carnot groups that are semidirect products of two abelian groups, we give a set of conditions that normal trajectories must fulfill to be globally length-minimizing. Our results are based on a symplectic reduction procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源