论文标题
部分可观测时空混沌系统的无模型预测
New bounds for numbers of primes in element orders of finite groups
论文作者
论文摘要
令$ρ(n)$表示根据有限解决组$ g $的顺序可能发生的不同数量的不同数量,其所有元素的订单最多可除以$ n $ distiond的素数。我们证明所有$ n \ geq 1 $ $ρ(n)\ leq 5n $。作为一个应用程序,我们改进了Hung和Yang最近的任意有限群体的限制。
Let $ρ(n)$ denote the maximal number of different primes that may occur in the order of a finite solvable group $G$, all elements of which have orders divisible by at most $n$ distinct primes. We show that $ρ(n)\leq 5n$ for all $n\geq 1$. As an application, we improve on a recent bound by Hung and Yang for arbitrary finite groups.