论文标题
IK-GEO:使用子问题分解的统一机器人倒数运动学
IK-Geo: Unified Robot Inverse Kinematics Using Subproblem Decomposition
论文作者
论文摘要
本文介绍了开源机器人逆运动学(IK)求解器IK-GEO,这是基于已发表文献的最快的IK求解器。在这种统一的方法中,对于任何6多种全面的(6R)操纵器的IK被分解为通过与其他几何学对象相交的六个规范的几何子问题。我们使用几何和线性代数方法为这些子问题提供了新的高效和奇异性解决方案。 IK-GEO通过在所有情况下解决子问题解决方案来找到所有IK解决方案,有时包括奇异解决方案和最小二乘解决方案,包括在不存在时连续且有时是最小二乘的感觉。基于相交或平行关节轴的病例将机器人分为运动家族,同一家族中的机器人使用相同的IK算法。具有三个相交或平行轴的6R机器人以封闭形式求解,并且所有溶液都完全没有迭代。通过搜索一个或两个关节角的误差函数的零,可以有效地解决其他6R机器人。子问题和IK解决方案易于理解,实现,测试和修改,这意味着此方法很容易移植到新的语言和环境中。我们将我们的几何方法连接到效率较低但基于多项式的方法:不用使用搜索,而是根据一个关节的切线半角度写下,而不是使用搜索,而是使用搜索。这导致了多元多项式方程的系统,从中,与与IK溶液相对应的零的单变量多项式从中很容易得出。
This paper presents the open-source robot inverse kinematics (IK) solver IK-Geo, the fastest general IK solver based on published literature. In this unifying approach, IK for any 6-DOF all-revolute (6R) manipulator is decomposed into six canonical geometric subproblems solved by intersecting circles with other geometric objects. We present new efficient and singularity-robust solutions to these subproblems using geometric and linear algebra methods. IK-Geo finds all IK solutions including singular solutions and sometimes least-squares solutions by solving for subproblem solutions in all cases, including in a continuous and sometimes least-squares sense when a solution does not exist. Robots are classified into kinematic families based on cases of intersecting or parallel joint axes, and robots in the same family use the same IK algorithm. 6R robots with three intersecting or parallel axes are solved in closed form, and all solutions are found exactly without iteration. Other 6R robots are efficiently solved by searching for zeros of an error function of one or two joint angles. The subproblem and IK solutions are easy to understand, implement, test, and modify, meaning this method is readily ported to new languages and environments. We connect our geometric method with less efficient but more robust polynomial-based methods: rather than using search, subproblems and error functions may be written in terms of the tangent half-angle of one joint. This results in a system of multivariate polynomial equations from which the univariate polynomial with zeros corresponding to IK solutions is readily derived.