论文标题

土壤过程的因果建模,以改善概括

Causal Modeling of Soil Processes for Improved Generalization

论文作者

Sharma, Somya, Sharma, Swati, Neal, Andy, Malvar, Sara, Rodrigues, Eduardo, Crawford, John, Kiciman, Emre, Chandra, Ranveer

论文摘要

测量和监测土壤有机碳对于农业生产力和解决关键环境问题至关重要。土壤有机碳不仅丰富了土壤中的营养,而且还具有一系列的共同利益,例如改善储水和限制物理侵蚀。尽管在土壤有机碳估计中进行了大量工作,但当前的方法并未在土壤条件和管理实践中良好地推广。我们从经验上表明,土壤过程中因果关系的明确建模可改善预测模型的分布概括性。我们提供了使用因果发现方法估算骨骼的土壤有机碳估计模型的比较分析。我们的框架在测试平方误差和测试平均绝对误差中平均提高了81%。

Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源