论文标题
通过进化算法(MOVEA)进行多目标优化,用于对人脑的高清经颅电刺激
Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain
论文作者
论文摘要
设计经颅电刺激(TES)策略需要考虑多个目标,例如目标区域中的强度,焦点,刺激深度和回避区,这些目标通常是相互排斥的。目前缺乏一个计算框架,用于优化不同的策略和比较这些目标之间的权衡。在本文中,我们通过进化算法(MOVEA)提出了一个称为多目标优化的一般框架,以解决在没有预定义方向的情况下设计TES策略时的非凸优化问题。 Movea可以通过帕累托优化同时优化多个目标,在没有手动重量调整的情况下单次运行后产生帕累托前锋,并允许轻松扩展到更多目标。该帕累托阵线由满足各种要求的最佳解决方案组成,同时尊重冲突目标(例如强度和焦点)之间的权衡关系。 MoveA具有多功能性,适用于基于高清(HD)和两对系统的经颅交流刺激(TAC)和经颅颞干扰刺激(TTI)。我们对TACS和TTI进行了全面的比较,在不同深度的目标,焦点和靶标的方面。Movea促进了基于特定目标和约束的TES的优化,在理解大脑区域和认知功能之间的因果关系和治疗障碍之间的因果关系和基于TACS的神经调节方面,促进了TTIS和TACS的神经调节。 MOVEA的代码可从https://github.com/ncclabsustech/movea获得。
Designing a transcranial electrical stimulation (TES) strategy requires considering multiple objectives, such as intensity in the target area, focality, stimulation depth, and avoidance zone, which are often mutually exclusive. A computational framework for optimizing different strategies and comparing trade-offs between these objectives is currently lacking. In this paper, we propose a general framework called multi-objective optimization via evolutionary algorithms (MOVEA) to address the non-convex optimization problem in designing TES strategies without predefined direction. MOVEA enables simultaneous optimization of multiple targets through Pareto optimization, generating a Pareto front after a single run without manual weight adjustment and allowing easy expansion to more targets. This Pareto front consists of optimal solutions that meet various requirements while respecting trade-off relationships between conflicting objectives such as intensity and focality. MOVEA is versatile and suitable for both transcranial alternating current stimulation (tACS) and transcranial temporal interference stimulation (tTIS) based on high definition (HD) and two-pair systems. We performed a comprehensive comparison between tACS and tTIS in terms of intensity, focality, and steerability for targets at different depths.MOVEA facilitates the optimization of TES based on specific objectives and constraints, advancing tTIS and tACS-based neuromodulation in understanding the causal relationship between brain regions and cognitive functions and in treating diseases. The code for MOVEA is available at https://github.com/ncclabsustech/MOVEA.