论文标题

神经元集合推理方法的生成模型的概括

Generalization of generative model for neuronal ensemble inference method

论文作者

Kimura, Shun, Takeda, Koujin

论文摘要

通过无数神经元的相互作用,维持生活活动所必需的各种大脑功能。因此,分析功能性神经元网络很重要。为了阐明大脑功能的机制,许多研究正在积极进行功能性神经元集合和枢纽,包括神经科学的所有领域。此外,最近的研究表明,功能性神经元集合和集线器的存在有助于信息处理的效率。由于这些原因,人们需要从神经元活动数据中推断功能性神经元集合的方法,并且已经提出了基于贝叶斯推论的方法。但是,建模贝叶斯推论的活动存在问题。每个神经元活性的特征取决于生理实验条件。结果,贝叶斯推论模型中平稳性的假设阻碍了推论,这导致推理结果不稳定和推理准确性的降解。在这项研究中,我们扩展了用于表达神经元状态的变量的范围,并概括了扩展变量模型的可能性。通过与先前的研究进行比较,我们的模型可以在较大空间中表达神经元状态。这种概括不限制二进制输入,使我们能够执行软聚类并将方法应用于非平稳性神经活动数据。此外,对于该方法的有效性,我们将开发的方法应用于从泄漏的集成和开火模型中从电势数据产生的多个合成荧光数据。

Various brain functions that are necessary to maintain life activities materialize through the interaction of countless neurons. Therefore, it is important to analyze functional neuronal network. To elucidate the mechanism of brain function, many studies are being actively conducted on functional neuronal ensemble and hub, including all areas of neuroscience. In addition, recent study suggests that the existence of functional neuronal ensembles and hubs contributes to the efficiency of information processing. For these reasons, there is a demand for methods to infer functional neuronal ensembles from neuronal activity data, and methods based on Bayesian inference have been proposed. However, there is a problem in modeling the activity in Bayesian inference. The features of each neuron's activity have non-stationarity depending on physiological experimental conditions. As a result, the assumption of stationarity in Bayesian inference model impedes inference, which leads to destabilization of inference results and degradation of inference accuracy. In this study, we extend the range of the variable for expressing the neuronal state, and generalize the likelihood of the model for extended variables. By comparing with the previous study, our model can express the neuronal state in larger space. This generalization without restriction of the binary input enables us to perform soft clustering and apply the method to non-stationary neuroactivity data. In addition, for the effectiveness of the method, we apply the developed method to multiple synthetic fluorescence data generated from the electrical potential data in leaky integrated-and-fire model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源