论文标题

对应和稳定的同义理论

Correspondences and stable homotopy theory

论文作者

Garkusha, Grigory

论文摘要

给出了一种从一般类别中的对称环对象产生对象和光谱类别的一般方法。作为一种应用,通过在代数封闭的磁场上定义的交换对称环光谱,从模块中恢复了光谱$ sh $的稳定同义理论。另一个应用程序从相关光谱类别的光谱模块中恢复了稳定的动机同义理论$ sh(k)$。

A general method of producing correspondences and spectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra $SH$ is recovered from modules over a commutative symmetric ring spectrum defined in terms of framed correspondences over an algebraically closed field. Another application recovers stable motivic homotopy theory $SH(k)$ from spectral modules over associated spectral categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源