论文标题
协调输出不平衡,以实现极高的光伏模块单元图像的缺陷分割图像
Harmonizing output imbalance for defect segmentation on extremely-imbalanced photovoltaic module cells images
论文作者
论文摘要
光伏(PV)行业的持续发展提高了对PV模块单元细胞质量的高要求。当学习在PV模块细胞图像中分割缺陷区域时,微小的隐藏裂纹(THC)导致样本极高。缺陷像素与正常像素的比率可以低至1:2000。这种极端的不平衡使得很难分割PV模块单元的THC,这也是语义分割的挑战。为了解决对极高的THC数据分割缺陷的问题,本文从三个方面做出了贡献:(1)它提出了针对输出不平衡的明确措施; (2)它概括了可以处理不同类型的输出不平衡的分配损失; (3)它通过我们的自适应超参数选择算法引入了复合损失,该算法可以保持训练的一致性和推断,以使输出不平衡的输入数据对极高的输入数据进行协调。在四个广泛使用的深度学习体系结构和四个具有不同程度的输入不平衡的数据集上评估了所提出的方法。实验结果表明,所提出的方法优于现有方法。
The continuous development of the photovoltaic (PV) industry has raised high requirements for the quality of monocrystalline of PV module cells. When learning to segment defect regions in PV module cell images, Tiny Hidden Cracks (THC) lead to extremely-imbalanced samples. The ratio of defect pixels to normal pixels can be as low as 1:2000. This extreme imbalance makes it difficult to segment the THC of PV module cells, which is also a challenge for semantic segmentation. To address the problem of segmenting defects on extremely-imbalanced THC data, the paper makes contributions from three aspects: (1) it proposes an explicit measure for output imbalance; (2) it generalizes a distribution-based loss that can handle different types of output imbalances; and (3) it introduces a compound loss with our adaptive hyperparameter selection algorithm that can keep the consistency of training and inference for harmonizing the output imbalance on extremelyimbalanced input data. The proposed method is evaluated on four widely-used deep learning architectures and four datasets with varying degrees of input imbalance. The experimental results show that the proposed method outperforms existing methods.