论文标题

$ \ mathbf {e} \ times \ mathbf {b} $在低离子碰撞等离子体中具有任意磁化多物种离子的统一流体模型理论

Unified fluid-model theory of $\mathbf{E}\times\mathbf{B}$ instabilities in low-ionized collisional plasmas with arbitrarily magnetized multi-species ions

论文作者

Dimant, Y. S., Oppenheim, M. M, Evans, S., Martinez-Sykora, J.

论文摘要

本文在碰撞等离子体中,建立了局部跨场等离子体不稳定性的统一线性理论,例如Farley-Buneman,Electron热和离子热不稳定性,具有完全或部分未磁化的多物种离子。 Collisional lasma instabilities in low-ionized, highly dissipative, weakly magnetized plasmas play an important role in the lower Earth's ionosphere and may be of importance in other planet ionospheres, star atmospheres, cometary tails, molecular clouds, accretion disks, etc. In the solar chromosphere, macroscopic effects of collisional plasma instabilities may contribute into significant heating -- an effect originally从光谱观测和相关建模中提出。基于简化的5摩托多流体模型,理论分析产生了组合热毛利 - 鲍曼不稳定性(TFBI)的一般线性分散关系。详细分析重要的限制案例。该分析表明,该模型对正在研究的Rocesses的可接受适用性。流体模型模拟通常比进行更准确的动力学模拟所需的计算机资源要少得多,因此,这种方法对碰撞等离子体不稳定性的线性线性理论的明显成功使得可以使用最初开发的TFBI(以及其可能的宏观效果)来研究TFBI(以及其可能的宏观效果),最初是为solar和Planetares andereTare Alterseres大型模型而开发的。

This paper develops a unified linear theory of local cross-field plasma instabilities, such as the Farley-Buneman, electron thermal, and ion thermal instabilities, in collisional plasmas with fully or partially unmagnetized multi-species ions. Collisional lasma instabilities in low-ionized, highly dissipative, weakly magnetized plasmas play an important role in the lower Earth's ionosphere and may be of importance in other planet ionospheres, star atmospheres, cometary tails, molecular clouds, accretion disks, etc. In the solar chromosphere, macroscopic effects of collisional plasma instabilities may contribute into significant heating -- an effect originally suggested from spectroscopic observations and relevant modeling. Based on a simplified 5-moment multi-fluid model, the theoretical analysis produces the general linear dispersion relation for the combined Thermal-Farley-Buneman Instability (TFBI). Important limiting cases are analyzed in detail. The analysis demonstrates acceptable applicability of this model for the rocesses under study. Fluid-model simulations usually require much less computer resources than do more accurate kinetic simulations, so that the apparent success of this approach to the linear theory of collisional plasma instabilities makes it possible to investigate the TFBI (along with its possible macroscopic effects) using global fluid codes originally developed for large-scale modeling of the solar and planetary atmospheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源